
DesignWare DW8051 
MacroCell Solution
Databook
Version 3.2a, June 2000



Copyright Notice and Proprietary Information
Copyright   2000 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary 
information that is the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and 
may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may 
be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise, 
without prior written permission of Synopsys, Inc., or as expressly provided by the license agreement.

Right to Copy Documentation
The license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only. 
Each copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any. Licensee must 
assign sequential numbers to all copies. These copies shall contain the following legend on the cover page:

“This document is duplicated with the permission of Synopsys, Inc., for the exclusive use of 
__________________________________________ and its employees. This is copy number 
__________.”

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America. 
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to 
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH 
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks
Synopsys, the Synopsys logo, AMPS, Arcadia, CMOS-CBA, COSSAP, Cyclone, DelayMill, DesignPower, DesignSource, 
DesignWare, dont_use, Eagle Design Automation, Eaglei, EPIC, ExpressModel, Formality, in-Sync, Logic Automation, 
Logic Modeling, Memory Architect, ModelAccess, ModelTools, PathBlazer, PathMill, PowerArc, PowerMill, PrimeTime, 
RailMill, SmartLicense, SmartModel, SmartModels, SNUG, SOLV-IT!, SolvNET, Stream Driven Simulator, Synthetic 
Designs, TestBench Manager, and TimeMill are registered trademarks of Synopsys, Inc.

Trademarks
ACE, Behavorial Compiler, BOA, BRT, CBA, CBAII, CBA Design System, CBA-Frame, Cedar, Chip Architect, 
Chronologic, CoreMill, DAVIS, DC Expert, DC Expert Plus, DC Professional, DC Ultra, DC Ultra Plus, Design Advisor, 
Design Analyzer, DESIGN (ARROWS), Design Compiler, DesignTime, DesignWare Developer, Direct RTL, Direct Silicon 
Access, dont_touch, dont_touch_network, DW 8051, DWPCI, Eagle, EagleV, ECL Compiler, ECO Compiler, Falcon 
Interfaces, Floorplan Manager, Foundation, FoundryModel, FPGA Compiler, FPGA Compiler II, FPGA Express, Frame 
Compiler, Fridge, General Purpose Post-Processor, GPP, HDL Advisor, HDL Compiler, Integrator, Interactive Waveform 
Viewer, Liberty, Library Compiler, Logic Model, MAX, ModelSource, Module Compiler, MS-3200, MS-3400, Nanometer 
Design Experts, Nanometer IC Design, Nanometer Ready, Odyssey, PowerCODE, PowerGate, Power Compiler, 
ProFPGA, ProMA, Protocol Compiler, RMM, RoadRunner, RTL Analyzer, Schematic Compiler, Shadow Debugger, 
Silicon Architects, SmartModel Library, Source-Level Design, SWIFT, Synopsys Graphical Environment, Synopsys 
ModelFactory, Test Compiler, Test Compiler Plus, Test  Manager, TestGen, TestSim, TimeTracker, Timing Annotator, 
Trace-On-Demand, VCS, VCS Express, VCSi, VERA, VHDL Compiler, VHDL System Simulator, Visualyze, VMC, and 
VSS are trademarks of Synopsys, Inc.

Service Marks
TAP-in is a service mark of Synopsys, Inc.

All other product or company names may be trademarks of their respective owners.
Printed in the U.S.A.

Document Order Number: 26613-000 IB
DesignWare DW8051 MacroCell Solution Databook, v3.2a



Contents

About This Manual

1. Introduction

DW8051 MacroCell Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

DW8051 MacroCell Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3

DW8051 MacroCell Performance Overview . . . . . . . . . . . . . . . . . . 1-4

Application Software Compatibility  . . . . . . . . . . . . . . . . . . . . . . . . . 1-6

Configurable Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6

Synopsys coreConsultant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8

Synthesis Tool Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10

Simulation Tool Compatibility  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10

DW8051/DW8051-Source Version Differences. . . . . . . . . . . . . . . . 1-11

Required Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12

2. DW8051 Architectural Overview

Input/Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
iii



User-Modifiable Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8

DW8051 Architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9

Memory Organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11
Program Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
External RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13
Internal RAM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14

Instruction Set  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16

Instruction Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-23

CPU Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-24

Stretch Memory Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25

Dual Data Pointers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-26

Special Function Registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-27

3. DW8051 Hardware Description

Timers/Counters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

803x/805x Compatibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

Timers 0 and 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
Mode 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
Mode 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6
Mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
Mode 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7

Timer Rate Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9

Timer 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10
Timer 2 Mode Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12
16-Bit Timer/Counter Mode  . . . . . . . . . . . . . . . . . . . . . . . . . 3-13
16-Bit Timer/Counter Mode with Capture . . . . . . . . . . . . . . . 3-14
16-Bit Timer/Counter Mode with Auto-Reload . . . . . . . . . . . 3-14
iv



Baud Rate Generator Mode . . . . . . . . . . . . . . . . . . . . . . . . . 3-15

Serial Interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16

803x/805x Compatibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20

Mode 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20

Mode 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-23
Mode 1 Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-24
Mode 1 Transmit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-27
Mode 1 Receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-28

Mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-30
Mode 2 Transmit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-30
Mode 2 Receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-30

Mode 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-32

Multiprocessor Communications . . . . . . . . . . . . . . . . . . . . . . . . 3-34

SFR Bus Peripheral Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-35

External SFR Bus  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-35

Bit Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-36

Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-37

803x/805x Compatibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-39

Interrupt SFRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-40

Interrupt Processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-45

Interrupt Masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-46

Interrupt Priorities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-47

Interrupt Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-48

Interrupt Latency  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-49

Single-Step Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-49

Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-50
v



Power On Reset  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-50

Standard Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-51

Power Saving Modes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-54

Idle Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-55

Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-56

4. DW8051 User Guide

Basic Design Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2

Installing the DW8051 Core Kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5

Installation Directories and Files – VHDL Version . . . . . . . . . . . 4-5

Installation Directories and Files – Verilog Version  . . . . . . . . . . 4-8

Creating a Workspace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-12

Specifying Your Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13

Simulating the DW8051 MacroCell . . . . . . . . . . . . . . . . . . . . . . . . . 4-14

DW8051 Testbench Architecture . . . . . . . . . . . . . . . . . . . . . . . . 4-15

Simulation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17

Verification Activities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18
Generating a GTECH Simulation Model  . . . . . . . . . . . . . . . 4-19
Simulation Setup  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-20
Test Suite Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-21
Run Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-22
View Simulation Log. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-24

Application Specific Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-24

Simulating Internal RAM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-25

Simulating Internal ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-25
vi



Synthesizing the DW8051 MacroCell  . . . . . . . . . . . . . . . . . . . . . . . 4-26

Confirming Your Gate-Level Design  . . . . . . . . . . . . . . . . . . . . . . . . 4-27

Integrating the DW8051 into Your ASIC Design . . . . . . . . . . . . . . . 4-28

Instantiating DW8051_core (VHDL). . . . . . . . . . . . . . . . . . . . . . 4-28

Instantiating DW8051_core (Verilog) . . . . . . . . . . . . . . . . . . . . . 4-31

Interfacing to Internal RAM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-34
Internal RAM Read Interface . . . . . . . . . . . . . . . . . . . . . . . . 4-34
Internal RAM Write Interface  . . . . . . . . . . . . . . . . . . . . . . . . 4-35
Implementing Internal RAM . . . . . . . . . . . . . . . . . . . . . . . . . 4-36
Interfacing to Asynchronous RAM . . . . . . . . . . . . . . . . . . . . 4-36
Interfacing to Synchronous RAM . . . . . . . . . . . . . . . . . . . . . 4-39

Interfacing to Internal ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-42
Internal ROM Interface Signals  . . . . . . . . . . . . . . . . . . . . . . 4-42
Implementing Internal ROM . . . . . . . . . . . . . . . . . . . . . . . . . 4-43

Interfacing to External Memory Devices  . . . . . . . . . . . . . . . . . . 4-43
Standard 8051 Port Modules . . . . . . . . . . . . . . . . . . . . . . . . 4-43
16-Bit Address Memory Interface. . . . . . . . . . . . . . . . . . . . . 4-47
External ROM Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-48
External RAM Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-50

Custom SFR Peripheral Integration . . . . . . . . . . . . . . . . . . . . . . 4-60
SFR Bus Write Timing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-61
SFR Bus Read Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-63

Reading Designs Back in After Layout  . . . . . . . . . . . . . . . . . . . . . . 4-64

Manufacturing Test  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-65

Testing Internal RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-66

Testing Internal ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-67
vii



Software Development and Debugging. . . . . . . . . . . . . . . . . . . . . . 4-67

5. DW8051 Test Suite

Understanding the DW8051 MacroCell Test Suite  . . . . . . . . . . . . . 5-2

DW8051 Testbench Architecture . . . . . . . . . . . . . . . . . . . . . . . . 5-3

Test Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
Naming Conventions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
Opcode Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
Miscellaneous Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7
Internal RAM Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8
Internal ROM Tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9

Testbench Command File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
Command File Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12
Command File Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12
Modifying the Testbench Command File Manually. . . . . . . . 5-14
Testbench File Conversion for Verilog . . . . . . . . . . . . . . . . . 5-15

Simulation Procedures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-17

Creating and Executing Custom Tests  . . . . . . . . . . . . . . . . . . . . . . 5-17

Writing Test Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-18
Initialization/Dump Facilities . . . . . . . . . . . . . . . . . . . . . . . . . 5-18
Error Handling Facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-20

Assembling and Executing Custom Test Programs  . . . . . . . . . 5-21

Appendix A. Opcode Tests

Appendix B. DW8051/DS80C320 Differences

Serial Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-2
viii



Timer 2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-2

Watchdog Timer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-2

Power Fail Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-3

Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-3

Timed Access Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-3

Parallel Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-4

Index
ix



x



Figures

Figure 1-1 Comparative Timing of DW8051 and Industry 
Standard 8051  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5

Figure 2-1 DW8051 Input/Output Signals  . . . . . . . . . . . . . . . . . . . . 2-2

Figure 2-2 DW8051 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 2-10

Figure 2-3 Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11

Figure 2-4 Internal RAM Organization . . . . . . . . . . . . . . . . . . . . . . . 2-15

Figure 2-5 CPU Timing for Single-Cycle Instruction. . . . . . . . . . . . . 2-25

Figure 3-1 Timer 0/1 – Modes 0 and 1 . . . . . . . . . . . . . . . . . . . . . . . 3-6

Figure 3-2 Timer 0/1 – Mode 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7

Figure 3-3 Timer 0 – Mode 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9

Figure 3-4 Timer 2 – Timer/Counter with Capture . . . . . . . . . . . . . . 3-13

Figure 3-5 Timer 2 – Timer/Counter with Auto-Reload  . . . . . . . . . . 3-15

Figure 3-6 Timer 2 – Baud Rate Generator Mode . . . . . . . . . . . . . . 3-16

Figure 3-7 Serial Port Mode 0 Receive Timing – Low Speed 
Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-22

Figure 3-8 Serial Port Mode 0 Receive Timing – High Speed 
Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-22
xi



Figure 3-9 Serial Port Mode 0 Transmit Timing – Low Speed 
Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-23

Figure 3-10 Serial Port Mode 0 Transmit Timing – High Speed 
Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-23

Figure 3-11 Serial Port 0 Mode 1 Transmit Timing   . . . . . . . . . . . . . 3-29

Figure 3-12 Serial Port 0 Mode 1 Receive Timing . . . . . . . . . . . . . . . 3-29

Figure 3-13 Serial Port 0 Mode 2 Transmit Timing  . . . . . . . . . . . . . . 3-32

Figure 3-14 Serial Port 0 Mode 2 Receive Timing . . . . . . . . . . . . . . . 3-32

Figure 3-15 Serial Port 0 Mode 3 Transmit Timing  . . . . . . . . . . . . . . 3-33

Figure 3-16 Serial Port 0 Mode 3 Receive Timing . . . . . . . . . . . . . . . 3-34

Figure 3-17 Timing of por_n Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . 3-52

Figure 3-18 Assertion of rst_in_n . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-53

Figure 3-19 Deassertion of rst_in_n. . . . . . . . . . . . . . . . . . . . . . . . . . 3-54

Figure 3-20 Idle Mode Entry Timing. . . . . . . . . . . . . . . . . . . . . . . . . . 3-58

Figure 3-21 Idle Mode Exit Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-59

Figure 3-22 Stop Mode Timing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-60

Figure 4-1 DW8051 MacroCell Design Flow . . . . . . . . . . . . . . . . . . 4-3

Figure 4-2 Directory Structure – VHDL Version . . . . . . . . . . . . . . . . 4-7

Figure 4-3 Directory Structure – Verilog Version . . . . . . . . . . . . . . . 4-10

Figure 4-4 DW8051 Testbench Architecture  . . . . . . . . . . . . . . . . . . 4-16

Figure 4-5 Simulation Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . 4-19

Figure 4-6 Internal RAM Read Signals and Timing . . . . . . . . . . . . . 4-35

Figure 4-7 Internal RAM Write Signals and Timing  . . . . . . . . . . . . . 4-36

Figure 4-8 Example Asynchronous Internal RAM Implementation  . 4-37

Figure 4-9 Asynchronous RAM Interface Timing . . . . . . . . . . . . . . . 4-37
xii



Figure 4-10 Example Synchronous Internal RAM Implementation  . . 4-40

Figure 4-11 Synchronous RAM Interface Timing . . . . . . . . . . . . . . . . 4-40

Figure 4-12 Internal ROM Interface Timing . . . . . . . . . . . . . . . . . . . . 4-43

Figure 4-13 DW8051_core to Standard Port Module Connections . . 4-45

Figure 4-14 ROM/RAM Interface for 8032 Built from DW8051_core . 4-46

Figure 4-15 External ROM Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-47

Figure 4-16 16-Bit Address Bus Memory Interface Connections . . . . 4-48

Figure 4-17 DW8051_core Signals for Program Memory Read Cycle 4-49

Figure 4-18 8032-Compatible I/O Signals for Program Memory 
Read Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-49

Figure 4-19 DW8051_core Signals for Data Memory Read with 
Stretch=0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-51

Figure 4-20 8032-Compatible I/O Signals for Data Memory 
Read with Stretch=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-52

Figure 4-21 DW8051_core Signals for Data Memory Write with 
Stretch=0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-53

Figure 4-22 8032-Compatible I/O Signals for Data Memory 
Write with Stretch=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-54

Figure 4-23 DW8051_core Signals for Data Memory Read with 
Stretch=1  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-55

Figure 4-24 8032-Compatible I/O Signals for Data Memory 
Read with Stretch=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-56

Figure 4-25 DW8051_core Signals for Data Memory Write with 
Stretch=1  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-57

Figure 4-26 8032-Compatible I/O Signals for Data Memory 
Write with Stretch=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-58
xiii



Figure 4-27 DW8051_core Signals for Data Memory Write with 
Stretch=2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-59

Figure 4-28 8032-Compatible I/O Signals for Data Memory 
Write with Stretch=2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-60

Figure 4-29 SFR Peripheral Interfacing . . . . . . . . . . . . . . . . . . . . . . . 4-62

Figure 4-30 SFR Bus Write Timing  . . . . . . . . . . . . . . . . . . . . . . . . . . 4-63

Figure 4-31 SFR Bus Read Timing  . . . . . . . . . . . . . . . . . . . . . . . . . . 4-64

Figure 5-1 DW8051 Testbench Architecture  . . . . . . . . . . . . . . . . . . 5-4
xiv



Tables

Table 1-1 Feature Summary of DW8051 and 
Common 803x/805x Configurations . . . . . . . . . . . . . . . . 1-8

Table 1-2 License Features Required for DW8051  . . . . . . . . . . . . 1-13

Table 2-1 Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3

Table 2-2 User-Modifiable Parameters . . . . . . . . . . . . . . . . . . . . . . 2-8

Table 2-3 Legend for Instruction Set Table . . . . . . . . . . . . . . . . . . . 2-17

Table 2-4 DW8051 Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . 2-17

Table 2-5 Data Memory Stretch Values  . . . . . . . . . . . . . . . . . . . . . 2-26

Table 2-6 Special Function Registers . . . . . . . . . . . . . . . . . . . . . . . 2-28

Table 2-7 Special Function Register Reset Values. . . . . . . . . . . . . 2-30

Table 2-8 PSW Register – SFR D0h  . . . . . . . . . . . . . . . . . . . . . . . 2-33

Table 3-1 Timer/Counter Implementation Comparison . . . . . . . . . . 3-2

Table 3-2 TMOD Register – SFR 89h. . . . . . . . . . . . . . . . . . . . . . . 3-3

Table 3-3 TCON Register – SFR 88h . . . . . . . . . . . . . . . . . . . . . . . 3-4

Table 3-4 CKCON Register – SFR 8Eh . . . . . . . . . . . . . . . . . . . . . 3-10

Table 3-5 T2CON Register – SFR C8h  . . . . . . . . . . . . . . . . . . . . . 3-11

Table 3-6 Timer 2 Mode Control Summary. . . . . . . . . . . . . . . . . . . 3-12
xv



Table 3-7 Serial Port Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-17

Table 3-8 SCON0 Register – SFR 98h. . . . . . . . . . . . . . . . . . . . . . 3-18

Table 3-9 SCON1 Register – SFR C0h  . . . . . . . . . . . . . . . . . . . . . 3-19

Table 3-10 Serial Interface Implementation Comparison . . . . . . . . . 3-20

Table 3-11 Timer 1 Reload Values for Common Serial Port 
Mode 1 Baud Rates  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-25

Table 3-12 Timer 2 Reload Values for Common Serial Port 
Mode 1 Baud Rates  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-27

Table 3-13 Bit–Addressable SFRs . . . . . . . . . . . . . . . . . . . . . . . . . . 3-36

Table 3-14 Interrupt Compatibility Summary for Extended 
Interrupt Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-39

Table 3-15 IE Register – SFR A8h . . . . . . . . . . . . . . . . . . . . . . . . . . 3-41

Table 3-16 IP Register – SFR B8h . . . . . . . . . . . . . . . . . . . . . . . . . . 3-42

Table 3-17 EXIF Register – SFR 91h . . . . . . . . . . . . . . . . . . . . . . . . 3-42

Table 3-18 EICON Register – SFR D8h . . . . . . . . . . . . . . . . . . . . . . 3-43

Table 3-19 EIE Register – SFR E8h . . . . . . . . . . . . . . . . . . . . . . . . . 3-44

Table 3-20 EIP Register – SFR F8h . . . . . . . . . . . . . . . . . . . . . . . . . 3-44

Table 3-21 Interrupt Natural Vectors and Priorities. . . . . . . . . . . . . . 3-46

Table 3-22 Interrupt Flags, Enables, and Priority Control. . . . . . . . . 3-47

Table 3-23  Power Saving Modes Compatibility Summary. . . . . . . . 3-55

Table 3-24 PCON Register – SFR 87h. . . . . . . . . . . . . . . . . . . . . . . 3-56

Table 4-1 DW8051 MacroCell Directory Structure – VHDL Version 4-5

Table 4-2 Files and Directories in DW8051 – VHDL Version . . . . . 4-7

Table 4-3 DW8051 MacroCell Directory Structure – Verilog Version 4-9

Table 4-4 Files and Directories in DW8051 – Verilog Version  . . . . 4-10
xvi



Table 4-5 Configuration Options . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13

Table 4-6 Generate GTECH Simulation Model Parameters . . . . . . 4-20

Table 4-7 Run Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . 4-23

Table 4-8 Available SFR Addresses for External Peripherals  . . . . 4-60

Table 5-1 Miscellaneous Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7

Table 5-2 Testbench Command File Commands . . . . . . . . . . . . . . 5-13

Table 5-3 Memory Dump Contents for big_dump.inc.unx  . . . . . . . 5-19

Table 5-4 Memory Dump Contents for bdump_s.inc.unx . . . . . . . . 5-19

Table 5-5 Selected SFRs in Memory Dump Addresses 38h–5Fh  . 5-20

Table 5-6 Testbench Exit Addresses and Actions. . . . . . . . . . . . . . 5-21

Table A-1 Opcode Tests Sorted by Instruction Type . . . . . . . . . . . . A-1

Table A-2 Opcode Tests Sorted by Test Name . . . . . . . . . . . . . . . . A-5

Table A-3 Opcode Tests Sorted by Opcode . . . . . . . . . . . . . . . . . . A-10

Table A-4 Opcode Tests for 128-Byte Internal RAM Configurations A-16
xvii



xviii



Examples

Example 4-1 Instantiating DW8051_core in VHDL  . . . . . . . . . . . . . 4-29

Example 4-2 Instantiating DW8051_core in Verilog . . . . . . . . . . . . . 4-31

Example 5-1 Testbench Command File for Opcode 84h . . . . . . . . . 5-12
xix



xx



About This Manual FIX ME!

The DW8051 MacroCell is a synthesizable, technology-independent 
microcontroller core that is object code compatible with the industry 
standard 8051 microcontroller. The DW8051 MacroCell Solution 
includes the DW8051 MacroCell, an automated test suite, and an 
example DW8051 design. The DW8051 MacroCell Solution is 
engineered for use with Synopsys coreConsultant. coreConsultant, 
in turn, provides automatic installation, configuration, test suite 
operation, and synthesis for the DW8051 MacroCell.

There are two versions of the DW8051 MacroCell Solution available:

• The DW8051 version includes encrypted source code for the 
DW8051 MacroCell (DW8051_core)

• The DW8051-Source version includes unencrypted source code 
for the DW8051 MacroCell (DW8051_core)

Encryption of the source code for the DW8051 MacroCell is the only 
difference between the DW8051 and DW8051-Source versions of the 
DW8051 MacroCell Solution. In both versions, the verification 
environment and design example are unencrypted. Both versions are 
available in VHDL and Verilog.
xxi



This databook provides:

• DW8051 MacroCell reference data

• Procedures to install, configure, verify, and synthesize the 
DW8051 MacroCell

• Information needed to integrate the DW8051 MacroCell into your 
design

This preface includes the following sections:

• Audience

• Manual Contents

• Related Publications

• Other DesignWare Products

• SOLV-IT! Online Help

• Customer Support

• Ordering Publications

• Conventions

Audience

This manual is intended for designers who are using, or are 
considering using, the DW8051 MacroCell with Synopsys synthesis 
tools.
xxii



Manual Contents

This databook is organized as follows:

Chapter 1: Introduction

Introduces the DW8051 MacroCell Solution, lists product features, 
performance characteristics, 803x/805x compatibility, and supported 
HDL synthesis and simulation tools.

Chapter 2: DW8051 Architectural Overview

Describes the DW8051 hardware architecture, memory organization, 
instruction set, and instruction timing.

Chapter 3: DW8051 Hardware Description

Describes the operation of the DW8051 internal hardware modules.

Chapter 4: DW8051 User Guide

Describes how to install, configure, simulate, and synthesize the 
DW8051 MacroCell using coreConsultant, and provides information 
you need to integrate the DW8051 into your application design.

Chapter 5: DW8051 Test Suite

Describes the architecture of the DW8051 test suite and provides 
procedures to modify and operate the test suite directly instead of 
through coreConsultant.

Appendix A: Opcode Tests

Provides lists of DW8051 test suite opcode tests, sorted by instruction 
type, test number, and opcode.
xxiii



Appendix B: DW8051/DW80C320 Differences

Describes the differences between the DW8051 MacroCell and the 
Dallas Semiconductor DS80C320.

Related Publications

For additional information about the DesignWare Foundation Library, 
see Synopsys Online Documentation (SOLD), which is included with 
the software, or Documentation on the Web, which is available 
through SolvNET on the Synopsys Web page at

http://www.synopsys.com

These Synopsys manuals supply additional information about 
DesignWare Components:

• DesignWare Foundation Library Databook, Volumes 1-3

• DesignWare User Guide

• DesignWare Developer Guide

• DesignWare DWPCI MacroCell Solution Databook

These Synopsys manuals supply additional information about 
Synopsys synthesis, simulation, and design reuse tools:

• coreConsultant User Guide

• Design Compiler Reference Manual

• Design Compiler Command-Line Interface Guide

• Design Compiler User Guide

• VHDL Compiler Reference Manual
xxiv



• HDL Compiler for Verilog Reference Manual

• Test Compiler User Guide

• Test Compiler Reference Manual

For additional information about DesignWare products, or to 
subscribe to the DesignWare Technical Bulletin, send e-mail to

designware@synopsys.com

or visit the DesignWare Web site at

http://www.synopsys.com/designware

Other DesignWare Products

The DesignWare family of products includes pre-verified, reusable 
designs and software tools that enable you to reuse existing designs. 
In addition to the DW8051 MacroCell Solution, Synopsys offers the 
following DesignWare products:

• DesignWare Foundation Library – A library of pre-designed, 
pre-verified components that are tightly integrated with Synopsys 
synthesis tools. The Foundation Library contains over 100 
components grouped into the following categories: Math, Logic, 
Memory, and Application-Specific.

• DesignWare DWPCI MacroCell Solution – A complete solution 
for PCI design. The DWPCI MacroCell Solution is available in both 
VHDL and Verilog.

• DesignWare Developer – A software tool that enables you to 
encapsulate your design data so that you can you can reuse your 
existing designs that same way that you use DesignWare 
components.
xxv



SOLV-IT! Online Help

SOLV-IT! is the Synopsys electronic knowledge base. It contains 
information about Synopsys and its tools and is updated daily. For 
more information about SOLV-IT!, send e-mail to

solvitfb@synopsys.com

or go to the Synopsys Web page at

http://www.synopsys.com

and click SolvNET.

Customer Support

If you have problems, questions, or suggestions regarding the 
DW8051 or other DesignWare MacroCells, please call the 
DesignWare MacroCell support hotline at 1.877.4.BEST.IP 
(1.877.423.7847).

If you have problems, questions, or suggestions regarding the 
DesignWare Foundation Library or other Synopsys products, contact 
the Synopsys Technical Support Center in one of the following ways:

• Send e-mail to

support_center@synopsys.com

• Call (650) 584-4200 outside the continental United States or call 
(800) 245-8005 inside the continental United States, from 7 AM 
to 5:30 PM Pacific Standard Time, Monday through Friday.
xxvi



Ordering Publications

To order additional databooks or other Synopsys publications, please 
contact your local Synopsys sales office or send e-mail to:
designware@synopsys.com.

Conventions

The following conventions are used in Synopsys documentation.

Table 1 Text Conventions

Convention Description

Courier Indicates command syntax.

In command syntax and examples, shows 
system prompts, text from files, error 
messages, and reports printed by the system.

italic Indicates a user specification, such as 
object_name

bold In interactive dialogs, indicates user input (text 
you type).

[ ] Denotes optional parameters, such as 
pin1 [pin2 ... pinN]

| Indicates a choice among alternatives, such as 
low | medium | high

(This example indicates that you can enter one 
of three possible values for an option: 
low, medium, or high.)

_ Connects terms that are read as a single term 
by the system, such as 
set_annotated_delay
xxvii



Control-c Indicates a keyboard combination, such as 
holding down the Control key and pressing c.

\ Indicates a continuation of a command line.

/ Indicates levels of directory structure.

Edit > Copy Indicates a path to a menu command, such as 
opening the Edit menu and choosing Copy.

Table 1 Text Conventions

Convention Description
xxviii



1
Introduction 1

The DW8051 MacroCell is a technology-independent, synthesizable, 
microcontroller core that is instruction set compatible with the industry 
standard 8051 and configurable to match any of the common 803x/
805x variants. This chapter provides an overview of the DW8051 
MacroCell Solution. The topics are:

• DW8051 MacroCell Solution

• DW8051 MacroCell Features

• DW8051 MacroCell Performance Overview

• Application Software Compatibility

• Configurable Features

• Synopsys coreConsultant

• Synthesis Tool Compatibility
1-1

Introduction



• Simulation Tool Compatibility

• DW8051/DW8051-Source Version Differences

• Required Resources

DW8051 MacroCell Solution

To provide a complete solution for implementing an embedded 
8051-compatible microcontroller, the DW8051 MacroCell Solution 
includes:

• DW8051 MacroCell – A silicon-proven, technology-independent, 
configurable core that is object code compatible with the standard 
8051 family of microprocessors. The DW8051 is available in either 
encrypted source code format (DW8051) or unencrypted VHDL 
or Verilog source code format (DW8051-Source). If you are 
interested in purchasing the source code version 
(DW8051-Source), call 1.877.4.BEST.IP (1.877.423.7847).

• Synopsys coreConsultant for automatic installation, 
configuration, simulation, and synthesis of the DW8051 
MacroCell

• Extensive test suite that includes:

- HDL testbench that instantiates DW8051_core, plus models for 
internal/external ROM and RAM and other external peripherals

- Processes that trace the program counter and write accesses 
to external RAM

- A collection of 8051 assembler programs that test all of the 
instruction set opcodes, plus miscellaneous tests for internal 
hardware.
1-2

Introduction



- Simulation reference files

- Automatic test suite configuration and operation through the 
coreConsultant graphical user interface (GUI).

• An example 8032-compatible microcontroller design that uses 
DW8051_core. This example design also illustrates how to build 
and connect 8051-compatible port modules for designs where it 
is preferable to use standard 8051 port modules instead of the 
DW8051 enhanced memory interface.

The example 8032 design is non-synthesizable, and is included 
for illustrative purposes only.

• 0.35-micron Cell Based Array (CBA) technology library to be used 
as an example library for synthesis

• A copy of this databook in Portable Document Format (PDF)

DW8051 MacroCell Features

The DW8051 MacroCell provides the following design features and 
enhancements to the standard 8051 microcontroller:

• Compatible with industry standard 803x/805x:

- Standard 8051 instruction set

- Optional full-duplex serial ports selectable through parameter

- Optional third timer selectable through parameter

- Control signals for standard 803x/805x I/O ports

• High speed architecture:

- 4 clocks/instruction cycle
1-3

Introduction



- 2.5X average improvement in instruction execution time over 
the standard 8051

- Runs DC to greater than 120-MHz clock (Synopsys 
recommends a target technology of 0.25-micron or less for 
operation at frequencies greater than 100 MHz)

- Wasted bus cycles eliminated

- Dual data pointers

• Parameterizable internal RAM address range

• Parameterizable internal ROM address range

• Simple integration of user-defined peripherals through external 
Special Function Register (SFR) interface

• Enhanced memory interface with 16-bit address bus

• Variable length MOVX to access fast/slow RAM peripherals

• Fully static synchronous design

• Supports industry standard compilers, assemblers, emulators, 
and ROM monitors

• Supports FPGA Compiler II

DW8051 MacroCell Performance Overview

The DW8051 processor core provides increased performance by 
executing instructions in a 4-clock bus cycle, as opposed to the 
12-clock bus cycle in the standard 8051 (see Figure 1-1). The 
shortened bus timing improves the instruction execution rate for most 
instructions by a factor of three over the standard 8051 architectures.
1-4

Introduction



Figure 1-1 Comparative Timing of DW8051 and Industry Standard 8051

The average speed improvement for the entire instruction set is 
approximately 2.5X, calculated as follows:

Number of Opcodes Speed Improvement

150 3.0X

51 1.5X

43 2.0X

2 2.4X

Total: 255 Average: 2.5X

Note: Comparison is for DW8051 and standard 8051 running at the same 
clock frequency.

PSEN

ALE

XTAL1

AD0–AD7

PSEN

ALE

PORT2

Timing of 8051 Built With DW8051_core

Standard 8051 Timing

PORT2

single byte single 
cycle instruction

single byte single 
cycle instruction

AD0–AD7

4 cycles

12 cycles
1-5

Introduction



There is not an exact 3X improvement in speed because some 
instructions require a different number of instruction cycles on the 
DW8051 than they do on the standard 8051. In the standard 8051, 
all instructions except for MUL and DIV take one or two instruction 
cycles to complete. In the DW8051 architecture, instructions can take 
between one and five instruction cycles to complete. However, 
because of the 3X faster instruction cycle time, the average speed 
improvement for all instructions is 2.5X.

Application Software Compatibility

The DW8051 is object code compatible with the industry standard 
8051 microcontroller. That is, object code compiled with an industry 
standard 8051 compiler or assembler will execute on the DW8051 
and will be functionally equivalent. However, because the DW8051 
uses a different instruction timing than the standard 8051, code with 
timing loops may require modification.

See “Instruction Set” on page 2-16  for a list of the number of 
instruction cycles required to perform each instruction on the 
DW8051. The DW8051 instruction cycle timing and number of 
instruction cycles required for each instruction are compatible with 
the Dallas Semiconductor DS80C320.

Configurable Features

You can easily configure the DW8051 hardware to be functionally 
compatible with a variety of 803x/805x configurations. For example, 
you can implement one serial port for compatibility with the Intel 8051, 
or you can implement two serial ports for compatibility with the Dallas 
Semiconductor DS80C320.
1-6

Introduction



The configurable features of the DW8051 are:

• Standard (6-source) or extended (13-source) interrupt unit

• Interface to either 128 or 256 bytes of internal RAM

• Interface for up to 64 KB of internal ROM

• Two, one, or zero serial ports

• Optional third timer (Timer 2)

Table 1-1 provides a feature-by-feature comparison of the DW8051 
MacroCell and several common 803x/805x configurations. Similar 
hardware feature comparisons appear in the detailed hardware 
descriptions throughout this databook.

The DW8051 MacroCell is similar to the DS80C320 in terms of 
hardware features and instruction cycle timing. However, there are 
some important implementation differences between the DW8051 
and the DS80C320, as detailed in Appendix B.
1-7

Introduction



    

Synopsys coreConsultant

The DW8051 MacroCell Solution requires the Synopsys 
coreConsultant tool, which Synopsys provides with the DW8051 
MacroCell Solution. coreConsultant is a software tool that greatly 

Table 1-1 Feature Summary of DW8051 and Common 803x/805x 
Configurations

Feature Intel
8031

Intel
8031

Intel
80C32

Intel
80C52

Dallas
DS80C320

DW8051

Clocks per 
instruction cycle

12 12 12 12 4 4

Internal ROM(1) – 4 KB – 8 KB – up to 64 KB

Internal RAM(1) 128 
bytes

128 
bytes

256 
bytes

256 
bytes

256 
bytes

128 bytes or 
256 bytes

Data Pointers 1 1 1 1 2 2

Serial Ports 1 1 1 1 2 0, 1, or 2

16-bit Timers 2 2 3 3 3 2 or 3

Interrupt sources 
(total of internal and 
external)

5 5 6 6 13 6 or 13

Stretch memory 
cycles

no no no no yes yes

Internal watchdog 
timer

no no no no yes no

Internal power fail 
detection

no no no no yes no

Timed access 
protection

no no no no yes no

(1) Internal RAM and ROM are external to DW8051_core to simplify simulation and implementation 
of technology-specific RAM/ROM.
1-8

Introduction



enhances the ease-of-use of DesignWare MacroCells and other 
cores that have been developed and packaged for use with 
coreConsultant.

Packaging a core for use with coreConsultant captures the core 
developer’s knowledge of the design and its expected target 
environment. coreConsultant, in turn, uses that knowledge to provide 
automatic configuration and high-quality synthesis of the core.

coreConsultant provides the following services to enable you to 
rapidly generate a highly-optimized gate-level netlist for the DW8051 
MacroCell in your selected target technology:

• Installation – coreConsultant automatically installs the DW8051 
MacroCell Solution into your selected target directory and verifies 
that the installation was successful.

• User interface – coreConsultant is your user interface to the 
DW8051 MacroCell. The coreConsultant GUI guides you through 
the DW8051 MacroCell design flow activities in the required order. 
You can also execute the design flow through a batch mode 
interface.

• MacroCell configuration – You select your DW8051 MacroCell 
configuration options through the coreConsultant GUI and 
coreConsultant automatically writes out customized VHDL or 
Verilog source code for your selected configuration.

• MacroCell simulation – coreConsultant is your interface to the 
DW8051 MacroCell test suite for verification of the DW8051 as a 
standalone block. You select which test programs you want to 
execute and coreConsultant automatically invokes your selected 
VHDL or Verilog simulation tool to run the simulation. When the 
simulation is complete, coreConsultant reports the test results.
1-9

Introduction



• Automatic, high-quality synthesis – coreConsultant prompts you 
for context-specific synthesis specifications, allows you to select 
a synthesis strategy, then drives Design Compiler to synthesize 
a highly optimized gate-level version of your custom DW8051 
configuration. 

• Synthesis results analysis – coreConsultant invokes a series of 
Design Compiler design checks and analyzes the extracted 
synthesis reports, then presents the data to you in HTML format 
through your selected web browser. The analyzed synthesis 
results include summary reports with links to progressively more 
detailed data.

For more information about coreConsultant features and user 
procedures, refer to the coreConsultant User Guide.

Synthesis Tool Compatibility

The DW8051 MacroCell Solution is compatible with Synopsys 
synthesis tools.

Simulation Tool Compatibility

The VHDL version of the DW8051 MacroCell Solution is compatible 
with the following VHDL simulators:

• Synopsys VSS

• Synopsys Scirocco

• Cadence Leapfrog

• MTI ModelSim
1-10

Introduction



The Verilog version of the DW8051 MacroCell Solution is compatible 
with the following Verilog simulators:

• Synopsys VCS

• Cadence Verilog-XL

• Cadence NC-Verilog

• MTI ModelSim

DW8051/DW8051-Source Version Differences

There are two versions of the DW8051 MacroCell Solution available:

• The DW8051 version includes encrypted source code for the 
DW8051 MacroCell (DW8051_core). All other files included with 
the DW8051 MacroCell Solution, such as testbench and design 
example files, are unencrypted and identical to the files included 
in the DW8051-Source version.

• The DW8051-Source version includes unencrypted source code 
for the DW8051 MacroCell.

The DW8051 and DW8051-Source versions of the DW8051 
MacroCell Solution are identical except that the DW8051 version 
contains encrypted source code for the DW8051 MacroCell. 

The DW8051-Source (unencrypted) version simulates faster than the 
DW8051 (encrypted) version because the RTL code can be directly 
simulated by any of the supported VHDL or Verilog simulators. For 
the DW8051 (encrypted) version, you must generate a GTECH 
simulation model of the DW8051, which requires longer simulation 
runtimes than simulating the RTL source code directly.
1-11

Introduction



Required Resources

The DW8051 MacroCell Solution requires the following resources:

• SPARC compatible workstation configured as follows:

- Operating system – SparcOS5 (Solaris)

- 50 MB available disk space for installation (80 MB for compile)

- 110 MB available swap space

- 50 MB physical memory

- CD-ROM drive

Note:   

SparcOS4 with OpenWindows 3.0 also requires Sun 
OpenWindows Patches #100444-74, #100492-12.

• Licensed Synopsys software: Design Compiler, (V)HDL Compiler, 
coreConsultant

• Synopsys IP licenses (see Table 1-2) 

• Optional Synopsys license: Test Compiler (for scan insertion 
synthesis), PrimeTime (for timing model extraction)

• A licensed simulation tool:

Supported VHDL simulators include: Synopsys VSS, Cadence 
LeapFrog, and MTI ModelSim

Supported Verilog simulators include: Synopsys VCS, Cadence 
Verilog-XL, and MTI ModelSim
1-12

Introduction



• Technology library files from your ASIC manufacturer. (Synopsys 
recommends a 0.25-micron technology library for operation at 
frequencies higher than 100 MHz.)

• For the Verilog version of the DW8051 MacroCell Solution, you 
also need the Perl utility installed on your system. The Perl utility 
is available at www.perl.com.

Table 1-2 License Features Required for DW8051

Purpose Encrypted Package Source Package

Unpacking the MacroCell DesignWare-Foundation
DW-IP-Consultant

DesignWare-8051-Source
DW-IP-Consultant

Writing Out the RTL Source N/A DesignWare-8051-Source
DW-IP-Consultant

Simulation DesignWare-Foundation
DW-IP-Consultant
Simulator License

DesignWare-8051-Source
DW-IP-Consultant
Simulator License

Synthesis DesignWare-Foundation
DW-IP-Consultant
DC-Expert

DesignWare-8051-Source
DW-IP-Consultant
DC-Expert
1-13

Introduction



1-14

Introduction



2
DW8051 Architectural Overview 2

This chapter provides a technical overview and description of the 
DW8051 MacroCell architecture. The topics are:

• Input/Output Signals

• User-Modifiable Parameters

• DW8051 Architecture
2-1

DW8051 Architectural Overview



Input/Output Signals

Figure 2-1 illustrates the DW8051 interface signals. Table 2-1 
describes the function of each signal.

Figure 2-1 DW8051 Input/Output Signals

clk

int0_n

sfr_data_out

por_n

sfr_wr

mem_addr
mem_data_out

sfr_addr

mem_ea_n
sfr_rdmem_data_in

mem_wr_n

mem_rd_n

mem_psrd_n

mem_pswr_n

mem_ale

port_pin_reg_n

p0_mem_reg_n

p2_mem_reg_n

p0_addr_data_n

int1_n

t1

t2

t2ex

rxd0_in

txd0test_mode_n

rxd0_out

t2_out

rst_in_n

stop_mode_n

rst_out_n

idle_mode_n

int3_n

int5_n

int2

int4

pfi

wdti

rxd1_in

t1_out

t0_out

txd1
rxd1_out

iram_data_in
iram_addr

iram_rd_n

iram_we2_n

iram_we1_n

irom_addr

irom_cs_n

irom_rd_n

iram_data_out

irom_data_out

sfr_data_in

t0
2-2

DW8051 Architectural Overview



Table 2-1 Signal Descriptions  

Pin Name Size Type Function

clk 1 Input Main system clock. All internal registers, except one 
register used to generate the mem_ale output, are 
positive edge triggered.

por_n 1 Input Power-on reset, active low. This signal is mandatory 
for initialization and must be active for at least 2 clock 
cycles. The rising edge of this input is synchronized 
internally to the rising edge of clk.

rst_in_n 1 Input Standard 8051 reset input, active low, synchronized 
internally to the end of the next bus cycle; must be 
active for at least 8 clock cycles.

rst_out_n 1 Output Reset output, active low. Logical AND of por_n and 
internally synchronized rst_in_n. This signal is used 
internally to reset all modules and may be used to reset 
externally connected hardware.

stop_mode_n 1 Output Indicates that the DW8051 core has entered stop 
mode, active low. The only way to exit stop mode is to 
apply reset.

idle_mode_n 1 Output Indicates that the DW8051 core has entered idle mode, 
active low. The DW8051 exits idle mode on reset or 
when an enabled interrupt occurs.

test_mode_n 1 Input Test mode input for scan test, active low. Must be kept 
high during normal operation.

sfr_addr 8 Output Address bus for external peripherals/ports.

sfr_data_out 8 Output Output data to internal and external SFR registers. 
Data is valid only when sfr_wr is asserted.

sfr_data_in 8 Input Input data from external SFR peripherals, sampled on 
next rising edge of clk after sfr_rd is asserted.

sfr_wr 1 Output Load signal for external SFR register/ports, active for 
one clock cycle.
2-3

DW8051 Architectural Overview



sfr_rd 1 Output Read signal for external SFR register/ports, active for 
one clock cycle.

mem_addr 16 Output Address lines to external ROM and RAM. Valid half a 
clock cycle before the falling edge of mem_ale until half 
a clock cycle after the falling edge of mem_ale.

mem_data_out 8 Output Output data to external RAM. Valid one clock cycle 
before rising edge of mem_wr_n/mem_pswr_n until 
one clock cycle after.

mem_data_in 8 Input Muxed input data from external ROM/RAM. Sampled 
on rising edge of mem_rd_n/mem_psrd_n.

mem_wr_n 1 Output Write strobe for external RAM. Data on mem_data_out 
should be latched on the rising edge of mem_wr_n.

mem_rd_n 1 Output Read enable for external RAM. Data provided on 
mem_data_in are sampled on the rising edge of 
mem_rd_n.

mem_pswr_n 1 Output Write strobe for external ROM. This enables users to 
download programs to external ROM space. Data on 
mem_data_out should be latched on the rising edge of 
mem_pswr_n. Data can be transferred to external 
ROM by MOVX instructions, the same way that data 
is transferred to external RAM. mem_pswr_n is 
activated instead of mem_wr_n when the WRS control 
bit is set in the SPC_FNC SFR. This is a special feature 
that is provided to enable reprogramming of flash 
EPROMs.

mem_psrd_n 1 Output Read enable for external ROM. Data provided on 
mem_data_in are sampled on the rising edge of 
mem_psrd_n.

mem_ale 1 Output Address latch enable signal. Addresses muxed on an 
external addr/data bus should be latched on the falling 
edge of mem_ale.

Table 2-1 Signal Descriptions  

Pin Name Size Type Function
2-4

DW8051 Architectural Overview



mem_ea_n 1 Input External program memory enable.When mem_ea_n is 
held high, the DW8051 CPU executes out of internal 
program memory (if available and unless the program 
counter exceeds the parameterized internal ROM 
space). When mem_ea_n is held low, the CPU 
executes only out of external program memory 
(through mem bus).

iram_addr 8 Output Address to internal RAM. Stable for one clk cycle 
during internal RAM read access and for two clk cycles 
during internal RAM write accesses.

iram_data_in 8 Output Data to be written to internal RAM, valid in the second 
half (second clk cycle) of the write cycle.

iram_data_out 8 Input Data to be read from internal RAM. Read data must be 
valid on the rising edge of clk at the end of the C3 cycle.

iram_rd_n 1 Output Read strobe to internal RAM, active (low) in C2 for all 
instructions. iram_rd_n is also active in C3 for all 
instructions that require indirect internal RAM read 
accesses and all instructions that require direct read 
access to internal RAM registers R0–R7.

iram_we1_n 1 Output Write enable 1 to internal RAM, active (low) for two clk 
cycles (whole write cycle). Indicates that the write 
address (iram_addr) is valid.

iram_we2_n 1 Output Write enable 2, active (low) in the second half (second 
clk cycle) of the write cycle. Indicates that write data 
(iram_data_in) is valid.

irom_addr 16 Output Address to internal ROM. Valid at the end of cycle C1.

irom_data_out 8 Input Data to be read from the internal ROM, latched at the 
end of C4.

irom_rd_n 1 Output Read strobe to internal ROM, active (low) from the end 
of C2 through the end of C4. irom_rd_n is optional and 
is not needed for address-only driven ROM 
implementations.

Table 2-1 Signal Descriptions  

Pin Name Size Type Function
2-5

DW8051 Architectural Overview



irom_cs_n 1 Output Select, active (low) for each read cycle. irom_cs_n is 
optional and is not needed for address-only driven 
ROM implementations.

port_pin_reg_n 1 Output Signal to external standard 8051 port modules to select 
between read of output register and pin. Pin selected 
if high, register selected if low.

p0_mem_reg_n 1 Output Signal to external standard 8051 port 0 module to 
select between output of address/data and output port 
register data. Addr/data selected if high, port register 
selected if low.

p0_addr_data_n 1 Output Signal to standard 8051 port 0 module to select 
between output of address and data. Address selected 
if high, data selected if low.

p2_mem_reg_n 1 Output Signal to standard 8051 port 2 module to select 
between output of address/data and output port 
register data. Address/data selected if high, port 
register selected if low.

int0_n 1 Input External interrupt line 0, active low, configurable as 
edge-sensitive or level-sensitive.

int1_n 1 Input External interrupt line 1, active low, configurable as 
edge-sensitive or level-sensitive.

int2 1 Input External interrupt line 2, edge-sensitive, active high. 
This pin has no function when the extd_intr parameter 
is set to 0.

int3_n 1 Input External interrupt line 3, edge-sensitive, active low. 
This pin has no function when the extd_intr parameter 
is set to 0.

int4 1 Input External interrupt line 4, edge-sensitive, active high. 
This pin has no function when the extd_intr parameter 
is set to 0.

Table 2-1 Signal Descriptions  

Pin Name Size Type Function
2-6

DW8051 Architectural Overview



int5_n 1 Input External interrupt line 5, edge-sensitive, active low. 
This pin has no function when the extd_intr parameter 
is set to 0.

pfi 1 Input Power-fail interrupt input, edge-sensitive, active high. 
This pin has no function when the extd_intr parameter 
is set to 0.

wdti 1 Input Watchdog-timer interrupt input, edge-sensitive, active 
high. This pin has no function when the extd_intr 
parameter is set to 0.

t0 1 Input Timer/Counter 0 external input.

t1 1 Input Timer/Counter 1 external input.

t2 1 Input Timer/Counter 2 external input. This pin has no 
function when the timer2 parameter is set to 0.

t2ex 1 Input Timer/Counter 2 capture/reload trigger. This pin has no 
function when the timer2 parameter is set to 0.

t0_out 1 Output Timer/Counter 0 output, active (high) for 1 clock cycle 
when timer/counter 0 overflows. If Timer 0 is operated 
in mode 3 (two separate 8-bit timers/counters), this pin 
is active when the low byte timer/counter overflows.

t1_out 1 Output Timer/Counter 1 output, active (high) for 1 clock cycle 
when timer/counter 1 overflows.

t2_out 1 Output Timer/Counter 2 output, active (high) for 1 clock cycle 
when timer/counter 2 overflows. This pin has no 
function (output is high) when the timer2 parameter is 
set to 0.

rxd0_in 1 Input Serial Port 0 input. This pin has no function when the 
serial parameter is set to 0.

rxd0_out 1 Output Serial Port 0 data output for mode 0, logic ’1’ for modes 
1, 2, and 3. This pin has no function (output is high) 
when the serial parameter is set to 0.

Table 2-1 Signal Descriptions  

Pin Name Size Type Function
2-7

DW8051 Architectural Overview



User-Modifiable Parameters

Table 2-2 lists the DW8051 user-modifiable parameters. 
coreConsultant automatically sets the parameter values when you 
specify your configuration of the DW8051.

txd0 1 Output Serial Port 0 clock output for mode 0, data output for 
modes 1, 2, and 3. This pin has no function (output is 
high) when the serial parameter is set to 0.

rxd1_in 1 Input Serial Port 1 input. This pin has no function when the 
serial parameter is set to 0 or 1.

rxd1_out 1 Output Serial Port 1 data output for mode 0, logic ’1’ for modes 
1, 2, and 3. This pin has no function (output is high) 
when the serial parameter is set to 0 or 1.

txd1 1 Output Serial Port 1 clock output for mode 0, data output for 
modes 1, 2, and 3. This pin has no function (output is 
high) when the serial parameter is set to 0 or 1.

Table 2-2 User-Modifiable Parameters

Parameter Function Legal 
Range

ram_256 Internal RAM size, determines addressability of internal RAM
(0 = 128 bytes, 1 = 256 bytes)

0 or 1

timer2 Timer 2 present (0 = Not present, 1 = Present) 0 or 1

rom_addr_size Determines how many of the 16 internal ROM address bits 
(irom_addr) are used (0 = no internal ROM present); unused 
irom_addr pins are tied to logic 0 

0 – 16

Table 2-1 Signal Descriptions  

Pin Name Size Type Function
2-8

DW8051 Architectural Overview



DW8051 Architecture

Figure 2-2 illustrates the hardware architecture of the DW8051 core. 
The name of the top-level module is DW8051_core. The following 
submodules and interfaces are optional and selectable through 
parameter settings:

• The optional upper 128-byte internal RAM is accessible only when 
ram_256 = 1. The iram_addr bus is always 8 bits. However, the 
DW8051 will not use addresses 80h–FFh when ram_256 = 0.

• The internal ROM address range (number of irom_addr pins used) 
is determined by the rom_addr_size parameter.

• Timer 2 (DW8051_timer2) is present only when timer2 = 1. 
(Timers 0 and 1 are always present.)

• Serial Port 0 (DW8051_serial) is present when serial = 1 or 2.

• Serial Port 1 (DW8051_serial) is present only when serial = 2.

serial Number of serial ports (0 = No serial port present, 1 = Serial 
Port 0 present, 2 = Serial Ports 0 and 1 present).

If you select serial = 2, you must also select the extended 
interrupt unit (extd_intr = 1) to receive interrupts from Serial 
Port 1. If you select serial = 2 and extd_intr = 0, you can still 
operate Serial Port 1 in polling mode.

0, 1, or 2

extd_intr Use extended interrupt unit with 13 sources (extd_intr = 1) or 
standard interrupt unit with 6 sources (extd_intr = 0)

0 or 1

Table 2-2 User-Modifiable Parameters

Parameter Function Legal 
Range
2-9

DW8051 Architectural Overview



• The Interrupt Unit is either DW8051_intr_0 (6-source) when 
extd_intr = 0 or DW8051_intr_1 (13-source) when extd_intr = 1.

DW8051_core provides interfaces to internal RAM and ROM. The 
actual internal RAM and ROM modules reside outside of 
DW8051_core and must be implemented by the user. The DW8051 
testbench includes simulation models for internal ROM and RAM.

Figure 2-2 DW8051 Block Diagram

DW8051_cpu

DW8051_intr_0

Interrupt Unit

DW8051_intr_1
or

DW8051_timer

Internal RAM

(128 or 256 bytes)

Timers 0 and 1

DW8051_timer2

DW8051_serial

Serial Port 0

txd0

rxd0_out
rxd0_in

(optional)

Timer 2

interrupts

mem_bus

sfr_bus

port_control

DW8051_core
t0, t1
t0_out, t1_out

t2

t2ex

DW8051_biu

DW8051_op_decoder

DW8051_alu

DW8051_control

clk
por_n
rst_in_n

t2_out

test_mode_n
rst_out_n

DW8051_main_regs

(optional)

DW8051_serial
Serial Port 1

txd1

rxd1_out
rxd1_in

(optional)

idle_mode_n
stop_mode_n

iram_bus

irom_bus

Internal ROM
(0 to 64 KB)
2-10

DW8051 Architectural Overview



Memory Organization

Memory organization in the DW8051 is similar to that of the industry 
standard 8051. There are three distinct memory areas: program 
memory (ROM), data memory (external RAM), and registers (internal 
RAM).

Figure 2-3 shows the DW8051 memory map. Program memory and 
data memory can be up to 64 KB each and share the same address 
range (0000h–FFFFh), but are accessed differently. The internal 
RAM addresses overlap the lower external RAM addresses, but are 
accessed through different instruction types.

Figure 2-3 Memory Map

External ROM

Program Memory Data Memory

External RAM

Internal ROM
(optional)

0000h 0000h

FFFFh FFFFh

00h

FFh

7Fh

80h

Internal RAM

Lower 128
bytes

Upper 128
bytes

(optional)
SFR space
2-11

DW8051 Architectural Overview



Program Memory

The DW8051 can address up to 64 KB of program memory at 
addresses 0000h–FFFFh. Program memory can be implemented as 
internal ROM, external ROM, or a combination of internal and external 
ROM.

External ROM

External ROM is normally read-only, but can be written to for program 
downloading by activating the mem_pswr_n signal. To activate 
mem_pswr_n, set bit 0 (WRS) in the SPC_FNC register (SFR address 
8Fh). The WRS bit switches between the activation of the mem_wr_n 
output (WRS = 0, default after reset) and the mem_pswr_n output 
(WRS = 1) for MOVX opcodes.

This feature enables writing to external Flash EPROMs (or ROM 
replaced by RAM for software development) with normal MOVX 
@DPTR or MOVX @Ri opcodes. 

The standard 8051 architectures access external ROM through the 
P0, P2, and PSEN signals. The DW8051 accesses external ROM 
through the mem_addr, mem_data_in, and mem_data_out buses, 
and the mem_psrd_n and mem_pswr_n control signals. For designs 
in which it is preferable to do so, the DW8051 supports connection 
of the port modules to provide the standard 8051 functionality.

Internal ROM

The rom_addr_size parameter determines address range of the 
internal ROM. The number of bits of the 16-bit internal ROM address 
bus (irom_addr) that are used is equal to rom_addr_size. The 
remaining irom_addr bits are tied to logic 0. If rom_addr_size = 0, 
there is no internal ROM, in which case the entire program memory 
2-12

DW8051 Architectural Overview



is readable and writable using the mem_addr, mem_data_in, and 
mem_data_out buses, and the mem_psrd_n and mem_pswr_n 
control signals.

The DW8051 fetches from program memory automatically, beginning 
at the reset address (0000h). If mem_ea_n = 1, the DW8051 executes 
out of internal ROM until the program address exceeds 
(2 rom_addr_size – 1), then proceeds to execute out of external ROM. 
If mem_ea_n = 0, the DW8051 always executes out of external ROM.

The DW8051 provides only the interface to the internal ROM. The 
actual implementation of internal ROM is up to the user. In the 
DW8051 testbench, the internal ROM is modeled as a separate 
process.

External RAM

The DW8051 can access up to 64 KB of external RAM, at addresses 
0000h–FFFFh, using MOVX instructions. The DW8051 accesses 
external RAM through the mem_addr, mem_data_in, and 
mem_data_out buses, and the mem_rd_n and mem_wr_n control 
signals.

Because the DW8051 provides all 16 address bits on mem_addr, it 
is not necessary to multiplex the lower 8 address bytes through an 
8-bit port module. For designs that take advantage of this feature and 
do not use the port modules, the port module control signals 
(port_pin_reg_n, p0_mem_reg_n, p0_addr_data_n, 
p2_mem_reg_n, and mem_ale) are not needed.

For designs in which it is preferable to use the standard 8051 port 
modules, the DW8051 supports connection of the port modules as 
shown in the example design (in the dw8051/example directory).
2-13

DW8051 Architectural Overview



To replace the function of the Port 2 latch in designs that do not use 
a Port 2 module, the DW8051 provides an additional special function 
register, MPAGE, at SFR address 92h. During MOVX A, @Ri and 
MOVX @Ri, A instructions, the DW8051 places the contents of the 
MPAGE register on the upper 8 address bits (mem_addr[15:8]). This 
provides the paging function that is normally provided by the Port 2 
latch. The MPAGE register has no function when a Port 2 module is 
used to connect external RAM.

If the external RAM is connected to the mem_addr outputs, you may 
need to adapt existing software that was written for the standard 
memory interface. If the software uses the paging function of the 
instructions MOVX A, @Ri and MOVX @Ri, A, change the address 
of the register holding the memory page from A0h (Port 2) to 92h 
(MPAGE).

Using SFR address 92h instead of the PORT2 register at SFR 
address A0h leaves the bit-addressable A0h SFR address available 
for other operations.

Internal RAM

The internal RAM (Figure 2-4) consists of:

• 128 bytes of registers and scratchpad memory accessible through 
direct or indirect addressing (iram_addr addresses 00h–7Fh)

• Optional upper 128 bytes of scratchpad memory accessible 
through indirect addressing (iram_addr addresses 80h–FFh). The 
optional upper 128 bytes of RAM is addressable only when the 
parameter ram_256 = 1.

• 128 special function registers (SFRs) accessible through direct 
addressing (sfr_addr addresses 80h–FFh)
2-14

DW8051 Architectural Overview



The DW8051 provides only the interface to the internal RAM. The 
actual implementation of the 128 or 256-byte internal RAM is up to 
the user. For simulation, the DW8051 testbench includes an internal 
RAM simulation model. The SFRs (with the exception of user-defined 
SFR peripherals) are built into DW8051_core. 

The lower 128 bytes are organized as shown in Figure 2-4. The lower 
32 bytes form four banks of eight registers (R0–R7). Two bits on the 
program status word (PSW) select which bank is in use. The next 16 
bytes form a block of bit-addressable memory space at bit addresses 
00h–7Fh. All of the bytes in the lower 128 bytes are accessible 
through direct or indirect addressing on the iram_bus.

Figure 2-4 Internal RAM Organization

00h

FFh

7Fh
80h

Lower 128
bytes

Upper 128
bytes

(optional)
SFR space

FFh

80h

Lower 128 bytes

00h
Bank 0

07h
08h

Bank 1
0Fh
10h

Bank 2

Bank 3

17h
18h

1Fh
20h

2Fh
30h

7Fh

0007

787F . . .

.

.

.

. . .

.

.

.
Bit-Addressable

Registers

Direct RAM

Direct or indirect addressing

Indirect addressing only

Direct addressing only

00

01

10

11

Bank Select
(PSW bits 4,3)
2-15

DW8051 Architectural Overview



The SFRs and the optional upper 128 bytes of RAM share the same 
address range (80h–FFh). However, the actual address space is 
separate and is differentiated by the type of addressing. Direct 
addressing accesses the SFRs on the sfr_bus, indirect addressing 
accesses the optional upper 128 bytes of RAM on the iram_bus.

Most SFRs are reserved for specific functions as described in “Special 
Function Registers” on page 2-27. Unused SFR addresses are 
available for connecting on-chip peripherals. SFR addresses ending 
in 0h or 8h are bit-addressable.

Instruction Set

All DW8051 instructions are binary code compatible and perform the 
same functions that they do in the industry standard 8051. The effects 
of these instructions on bits, flags, and other status functions is 
identical to the industry standard 8051. However, the timing of the 
instructions is different, both in terms of number of clock cycles per 
instruction cycle and timing within the instruction cycle.

Table 2-4 lists the DW8051 instruction set and the number of 
instruction cycles required to complete each instruction. Table 2-3 
defines the symbols and mnemonics used in Table 2-4.
2-16

DW8051 Architectural Overview



Table 2-3 Legend for Instruction Set Table

Symbol Function

A Accumulator

Rn Register R0–R7

direct Internal register address

@Ri Internal register pointed to by R0 or R1 (except MOVX)

rel Two’s complement offset byte

bit Direct bit address

#data 8-bit constant

#data 16 16-bit constant

addr 16 16-bit destination address

addr 11 11-bit destination address

Table 2-4 DW8051 Instruction Set 

Mnemonic Description Byte Instr. 
Cycles

Hex 
Code

Arithmetic

ADD A, Rn Add register to A 1 1 28–2F

ADD A, direct Add direct byte to A 2 2 25

ADD A, @Ri Add data memory to A 1 1 26–27

ADD A, #data Add immediate to A 2 2 24

ADDC A, Rn Add register to A with carry 1 1 38–3F

ADDC A, direct Add direct byte to A with carry 2 2 35

ADDC A, @Ri Add data memory to A with carry 1 1 36–37
2-17

DW8051 Architectural Overview



ADDC A, #data Add immediate to A with carry 2 2 34

SUBB A, Rn Subtract register from A with borrow 1 1 98–9F

SUBB A, direct Subtract direct byte from A with 
borrow

2 2 95

SUBB A, @Ri Subtract data memory from A with 
borrow

1 1 96–97

SUBB A, #data Subtract immediate from A with 
borrow

2 2 94

INC A Increment A 1 1 04

INC Rn Increment register 1 1 08–0F

INC direct Increment direct byte 2 2 05

INC @Ri Increment data memory 1 1 06–07

DEC A Decrement A 1 1 14

DEC Rn Decrement register 1 1 18–1F

DEC direct Decrement direct byte 2 2 15

DEC @Ri Decrement data memory 1 1 16–17

INC DPTR Increment data pointer 1 3 A3

MUL AB Multiply A by B 1 5 A4

DIV AB Divide A by B 1 5 84

DA A Decimal adjust A 1 1 D4

 Logical    

ANL A, Rn AND register to A 1 1 58–5F

Table 2-4 DW8051 Instruction Set (continued)

Mnemonic Description Byte Instr. 
Cycles

Hex 
Code
2-18

DW8051 Architectural Overview



ANL A, direct AND direct byte to A 2 2 55

ANL A, @Ri AND data memory to A 1 1 56–57

ANL A, #data AND immediate to A 2 2 54

ANL direct, A AND A to direct byte 2 2 52

ANL direct, #data AND immediate data to direct byte 3 3 53

ORL A, Rn OR register to A 1 1 48–4F

ORL A, direct OR direct byte to A 2 2 45

ORL A, @Ri OR data memory to A 1 1 46–47

ORL A, #data OR immediate to A 2 2 44

ORL direct, A OR A to direct byte 2 2 42

ORL direct, #data OR immediate data to direct byte 3 3 43

XRL A, Rn Exclusive-OR register to A 1 1 68–6F

XRL A, direct Exclusive-OR direct byte to A 2 2 65

XRL A, @Ri Exclusive-OR data memory to A 1 1 66–67

XRL A, #data Exclusive-OR immediate to A 2 2 64

XRL direct, A Exclusive-OR A to direct byte 2 2 62

XRL direct, #data Exclusive-OR immediate to direct byte 3 3 63

CLR A Clear A 1 1 E4

CPL A Complement A 1 1 F4

SWAP A Swap nibbles of A 1 1 C4

RL A Rotate A left 1 1 23

Table 2-4 DW8051 Instruction Set (continued)

Mnemonic Description Byte Instr. 
Cycles

Hex 
Code
2-19

DW8051 Architectural Overview



RLC A Rotate A left through carry 1 1 33

RR A Rotate A right 1 1 03

RRC A Rotate A right through carry 1 1 13

 Data Transfer    

MOV A, Rn Move register to A 1 1 E8–EF

MOV A, direct Move direct byte to A 2 2 E5

MOV A, @Ri Move data memory to A 1 1 E6–E7

MOV A, #data Move immediate to A 2 2 74

MOV Rn, A Move A to register 1 1 F8–FF

MOV Rn, direct Move direct byte to register 2 2 A8–AF

MOV Rn, #data Move immediate to register 2 2 78–7F

MOV direct, A Move A to direct byte 2 2 F5

MOV direct, Rn Move register to direct byte 2 2 88–8F

MOV direct, direct Move direct byte to direct byte 3 3 85

MOV direct, @Ri Move data memory to direct byte 2 2 86–87

MOV direct, #data Move immediate to direct byte 3 3 75

MOV @Ri, A MOV A to data memory 1 1 F6–F7

MOV @Ri, direct Move direct byte to data memory 2 2 A6–A7

MOV @Ri, #data Move immediate to data memory 2 2 76–77

MOV DPTR, #data Move immediate to data pointer 3 3 90

MOVC A, @A+DPTR Move code byte relative DPTR to A 1 3 93

Table 2-4 DW8051 Instruction Set (continued)

Mnemonic Description Byte Instr. 
Cycles

Hex 
Code
2-20

DW8051 Architectural Overview



MOVC A, @A+PC Move code byte relative PC to A 1 3 83

MOVX A, @Ri Move external data (A8) to A 1 2–9* E2–E3

MOVX A, @DPTR Move external data (A16) to A 1 2–9* E0

MOVX @Ri, A Move A to external data (A8) 1 2–9* F2–F3

MOVX @DPTR, A Move A to external data (A16) 1 2–9* F0

PUSH direct Push direct byte onto stack 2 2 C0

POP direct Pop direct byte from stack 2 2 D0

XCH A, Rn Exchange A and register 1 1 C8–CF

XCH A, direct Exchange A and direct byte 2 2 C5

XCH A, @Ri Exchange A and data memory 1 1 C6–C7

XCHD A, @Ri Exchange A and data memory nibble 1 1 D6–D7

* Number of cycles is user-selectable. See Stretch Memory Cycles in this chapter.  .

 Boolean

CLR C Clear carry 1 1 C3

CLR bit Clear direct bit 2 2 C2

SETB C Set carry 1 1 D3

SETB bit Set direct bit 2 2 D2

CPL C Complement carry 1 1 B3

CPL bit Complement direct bit 2 2 B2

ANL C, bit AND direct bit to carry 2 2 82

ANL C, /bit AND direct bit inverse to carry 2 2 B0

Table 2-4 DW8051 Instruction Set (continued)

Mnemonic Description Byte Instr. 
Cycles

Hex 
Code
2-21

DW8051 Architectural Overview



ORL C, bit OR direct bit to carry 2 2 72

ORL C, /bit OR direct bit inverse to carry 2 2 A0

MOV C, bit Move direct bit to carry 2 2 A2

MOV bit, C Move carry to direct bit 2 2 92

 Branching    

ACALL addr 11 Absolute call to subroutine 2 3 11–F1

LCALL addr 16 Long call to subroutine 3 4 12

RET Return from subroutine 1 4 22

RETI Return from interrupt 1 4 32

AJMP addr 11 Absolute jump unconditional 2 3 01–E1

LJMP addr 16 Long jump unconditional 3 4 02

SJMP rel Short jump (relative address) 2 3 80

JC rel Jump on carry = 1 2 3 40

JNC rel Jump on carry = 0 2 3 50

JB bit, rel Jump on direct bit = 1 3 4 20

JNB bit, rel Jump on direct bit = 0 3 4 30

JBC bit, rel Jump on direct bit = 1 and clear 3 4 10

JMP @A+DPTR Jump indirect relative DPTR 1 3 73

JZ rel Jump on accumulator = 0 2 3 60

JNZ rel Jump on accumulator /= 0 2 3 70

CJNE A, direct, rel Compare A, direct JNE relative 3 4 B5

Table 2-4 DW8051 Instruction Set (continued)

Mnemonic Description Byte Instr. 
Cycles

Hex 
Code
2-22

DW8051 Architectural Overview



Instruction Timing

Instruction cycles in the DW8051 are 4 clock cycles in length, as 
opposed to the 12 clock cycles per instruction cycle in the standard 
8051. This translates to a 3X improvement in execution time for most 
instructions.

However, some instructions require a different number of instruction 
cycles on the DW8051 than they do on the standard 8051. In the 
standard 8051, all instructions except for MUL and DIV take one or 
two instruction cycles to complete. In the DW8051 architecture, 
instructions can take between one and five instruction cycles to 
complete.

For example, in the standard 8051, the instructions MOVX A, @DPTR 
and MOV direct, direct each take 2 instruction cycles (24 clock 
cycles) to execute. In the DW8051 architecture, MOVX A, @DPTR 

CJNE A, #d, rel Compare A, immediate JNE relative 3 4 B4

CJNE Rn, #d, rel Compare reg, immediate JNE relative 3 4 B8–BF

CJNE @Ri, #d, rel Compare ind, immediate JNE relative 3 4 B6–B7

DJNZ Rn, rel Decrement register, JNZ relative 2 3 D8–DF

DJNZ direct, rel Decrement direct byte, JNZ relative 3 4 D5

   Miscellaneous             

NOP No operation 1 1 00

There is an additional reserved opcode (A5) that performs the same function as NOP.
All mnemonics are copyright © Intel Corporation 1980.

Table 2-4 DW8051 Instruction Set (continued)

Mnemonic Description Byte Instr. 
Cycles

Hex 
Code
2-23

DW8051 Architectural Overview



takes two instruction cycles (8 clock cycles) and MOV direct, 
direct takes three instruction cycles (12 clock cycles). Both 
instructions execute faster on the DW8051 than they do on the 
standard 8051, but require different numbers of clock cycles.

For timing of real-time events, use the numbers of instruction cycles 
from Table 2-4 to calculate the timing of software loops. The bytes 
column of Table 2-4 indicates the number of memory accesses 
(bytes) needed to execute the instruction. In most cases, the number 
of bytes is equal to the number of instruction cycles required to 
complete the instruction. However, as indicated in Table 2-4, there 
are some instructions (for example, DIV and MUL) that require a 
greater number of instruction cycles than memory accesses.

By default, the DW8051 timer/counters run at 12 clock cycles per 
increment so that timer-based events have the same timing as with 
the standard 8051. The timers can be configured to run at 4 clock 
cycles per increment to take advantage of the higher speed of the 
DW8051.

CPU Timing

As previously stated, a DW8051 instruction cycle consists of 4 clk 
cycles. Each clk cycle forms a CPU cycle. Therefore, an instruction 
cycle consists of 4 CPU cycles: C1, C2, C3, and C4, as illustrated in 
Figure 2-5. Various events occur in each CPU cycle, depending on 
the type of instruction being executed. Throughout this databook, the 
labels C1, C2, C3, and C4 in timing descriptions refer to the 4 CPU 
cycles within a particular instruction cycle.
2-24

DW8051 Architectural Overview



Figure 2-5 CPU Timing for Single-Cycle Instruction

Stretch Memory Cycles

The stretch memory cycle feature enables application software to 
adjust the speed of data memory access. The DW8051 can execute 
the MOVX instruction in as little as 2 instruction cycles. However, it is 
sometimes desirable to stretch this value; for example, to access slow 
memory or slow memory-mapped peripherals such as UARTs or 
LCDs.

The three LSBs of the Clock Control Register (at SFR location 8Eh) 
control the stretch value. You can use stretch values between zero 
and seven. A stretch value of zero adds zero instruction cycles, 
resulting in MOVX instructions executing in two instruction cycles. A 
stretch value of seven adds seven instruction cycles, resulting in 
MOVX instructions executing in nine instruction cycles. The stretch 
value can be changed dynamically under program control.

By default, the stretch value resets to one (three cycle MOVX). For 
full-speed data memory access, the software must set the stretch 
value to zero. The stretch value affects only data memory access. 
The only way to reduce the speed of program memory (ROM) access 
is to use a slower clock.

clk

instr_cycle

cpu_cycle

mem_ale

n + 1 n + 2

C1 C2 C3 C4 C1 C2 C3 C4 C1
2-25

DW8051 Architectural Overview



The stretch value affects the width of the read/write strobe and all 
related timing. Using a higher stretch value results in a wider read/
write strobe, which allows the memory or peripheral more time to 
respond.

Table 2-5 lists the data memory access speeds for stretch values 
zero through seven. MD2–0 are the three LSBs of the Clock Control 
Register (CKCON.2–0). For timing diagrams, see “External RAM 
Timing” on page 4-50.

Dual Data Pointers

The DW8051 employs dual data pointers to accelerate data memory 
block moves. The standard 8051 data pointer (DPTR) is a 16-bit value 
used to address external data RAM or peripherals. The DW8051 
maintains the standard data pointer as DPTR0 at SFR locations 82h 
and 83h. It is not necessary to modify code to use DPTR0.

Table 2-5 Data Memory Stretch Values

MD2 MD1 MD0 Memory 
Cycles

Read/Write Strobe 
Width (Clocks)

Strobe Width Time 
@25 MHz

0 0 0 2 2 80 ns

0 0 1 3 (default) 4 160 ns

0 1 0 4 8 320 ns

0 1 1 5 12 480 ns

1 0 0 6 16 640 ns

1 0 1 7 20 800 ns

1 1 0 8 24 960 ns

1 1 1 9 28 1120 ns
2-26

DW8051 Architectural Overview



The DW8051 adds a second data pointer (DPTR1) at SFR locations 
84h and 85h. The SEL bit in the DPTR Select register, DPS (SFR 
86h), selects the active pointer. When SEL = 0, instructions that use 
the DPTR will use DPL0 and DPH0. When SEL = 1, instructions that 
use the DPTR will use DPL1 and DPH1. SEL is the bit 0 of SFR 
location 86h. No other bits of SFR location 86h are used.

All DPTR-related instructions use the currently selected data pointer. 
To switch the active pointer, toggle the SEL bit. The fastest way to 
do so is to use the increment instruction (INC DPS). This requires 
only one instruction to switch from a source address to a destination 
address, saving application code from having to save source and 
destination addresses when doing a block move. 

Using dual data pointers provides significantly increased efficiency 
when moving large blocks of data.

The SFR locations related to the dual data pointers are:

82h DPL0 DPTR0 low byte
83h DPH0 DPTR0 high byte
84h DPL1 DPTR1 low byte
85h DPH1 DPTR1 high byte
86h DPS DPTR Select (LSB)

Special Function Registers

The Special Function Registers (SFRs) control several of the features 
of the DW8051. Most of the DW8051 SFRs are identical to the 
standard 8051 SFRs. However, there are additional SFRs that control 
features that are not available in the standard 8051. 
2-27

DW8051 Architectural Overview



Table 2-6 lists the DW8051 SFRs and indicates which SFRs are not 
included in the standard 8051 SFR space. When writing software for 
the DW8051, use equate statements to define the SFRs that are 
specific to the DW8051 and custom peripherals.

In Table 2-6, SFR bit positions that contain a 0 or a 1 cannot be written 
to and, when read, always return the value shown (0 or 1). SFR bit 
positions that contain “–” are available but not used. Table 2-7 lists 
the reset values for the SFRs.

Table 2-6 Special Function Registers  

Register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Addr

SP – – – – – – – – 81h

DPL0 – – – – – – – – 82h

DPH0 – – – – – – – – 83h

DPL1(1) – – – – – – – – 84h

DPH1(1) – – – – – – – – 85h

DPS(1) 0 0 0 0 0 0 0 SEL 86h

PCON SM
OD 0

– 1 1 GF1 GF0 STO
P

IDLE 87h

TCON TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 88h

TMOD GAT
E

C/T M1 M0 GAT
E

C/T M1 M0 89h

TL0 – – – – – – – – 8Ah

TL1 – – – – – – – – 8Bh

TH0 – – – – – – – – 8Ch

TH1 – – – – – – – – 8Dh
2-28

DW8051 Architectural Overview



CKCON(
1,7)

– – T2M T1M T0M MD2 MD1 MD0 8Eh

SPC_FN
C(1)

0 0 0 0 0 0 0 WRS 8Fh

EXIF(1,4
)

IE5 IE4 IE3 IE2 1 0 0 0 91h

MPAGE(
1)

– – – – – – – – 92h

SCON0(
3)

SM0
_0

SM1
_0

SM2
_0

REN
_0

TB8_
0

RB8_
0

TI_0 RI_0 98h

SBUF0(
3)

– – – – – – – – 99h

IE(6) EA ES1 ET2 ES0 ET1 EX1 ET0 EX0 A8h

IP(6) 1 PS1 PT2 PS0 PT1 PX1 PT0 PX0 B8h

SCON1(
1,5)

SM0
_1

SM1
_1

SM2
_1

REN
_1

TB8_
1

RB8_
1

TI_1 RI_1 C0h

SBUF1(
1,5)

– – – – – – – – C1h

T2CON(
2)

TF2 EXF
2

RCL
K

TCL
K

EXE
N2

TR2 C/T2 CP/
RL2

C8h

RCAP2L
(2)

– – – – – – – – CAh

RCAP2H
(2)

– – – – – – – – CBh

TL2(2) – – – – – – – – CCh

TH2(2) – – – – – – – – CDh

Table 2-6 Special Function Registers (continued) 

Register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Addr
2-29

DW8051 Architectural Overview



     

PSW CY AC F0 RS1 RS0 OV F1 P D0h

EICON(1
,6)

SM
OD1

1 EPFI PFI WDTI 0 0 0 D8h

ACC – – – – – – – – E0h

EIE(1,4) 1 1 1 EWD
I

EX5 EX4 EX3 EX2 E8h

B – – – – – – – – F0h

EIP(1,4) 1 1 1 PWD
I

PX5 PX4 PX3 PX2 F8h

(1) Not part of standard 8051 architecture.
(2) Present only when Timer 2 is implemented (timer2 = 1).
(3) Present only when Serial Port 0 is implemented (serial > 0).
(4) Present only when the extended interrupt unit is implemented (extd_intr = 1).
(5) Present only when Serial Port 1 is implemented (serial = 2).
(6) Bits ES1, PS1, EPFI, PFI, and WDTI are present only when the extended interrupt unit is 
implemented (extd_intr = 1). Otherwise, these bits are always read as ’0’.
(7) The TM2 bit in the CKCON register is available, but not used, when Timer 2 is not 
implemented (timer2 = 0).

Table 2-7 Special Function Register Reset Values

Register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 
0

Add
r

SP 0 0 0 0 0 1 1 1 81h

DPL0 0 0 0 0 0 0 0 0 82h

DPH0 0 0 0 0 0 0 0 0 83h

DPL1(1) 0 0 0 0 0 0 0 0 84h

Table 2-6 Special Function Registers (continued) 

Register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Addr
2-30

DW8051 Architectural Overview



DPH1(1) 0 0 0 0 0 0 0 0 85h

DPS(1) 0 0 0 0 0 0 0 0 86h

PCON 0 0 1 1 0 0 0 0 87h

TCON 0 0 0 0 0 0 0 0 88h

TMOD 0 0 0 0 0 0 0 0 89h

TL0 0 0 0 0 0 0 0 0 8Ah

TL1 0 0 0 0 0 0 0 0 8Bh

TH0 0 0 0 0 0 0 0 0 8Ch

TH1 0 0 0 0 0 0 0 0 8Dh

CKCON(1) 0 0 0 0 0 0 0 1 8Eh

SPC_FNC(
1)

0 0 0 0 0 0 0 0 8Fh

EXIF(1,4) 0 0 0 0 1 0 0 0 91h

MPAGE(1) 0 0 0 0 0 0 0 0 92h

SCON0(3) 0 0 0 0 0 0 0 0 98h

SBUF0(3) 0 0 0 0 0 0 0 0 99h

IE 0 0 0 0 0 0 0 0 A8h

IP 1 0 0 0 0 0 0 0 B8h

SCON1(1,
5)

0 0 0 0 0 0 0 0 C0h

SBUF1(1,5
)

0 0 0 0 0 0 0 0 C1h

Table 2-7 Special Function Register Reset Values(continued)

Register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 
0

Add
r

2-31

DW8051 Architectural Overview



The following SFRs are related to CPU operation and program 
execution:

T2CON(2) 0 0 0 0 0 0 0 0 C8h

RCAP2L(2) 0 0 0 0 0 0 0 0 CAh

RCAP2H(2
)

0 0 0 0 0 0 0 0 CBh

TL2(2) 0 0 0 0 0 0 0 0 CCh

TH2(2) 0 0 0 0 0 0 0 0 CDh

PSW 0 0 0 0 0 0 0 0 D0h

EICON(1) 0 1 0 0 0 0 0 0 D8h

ACC 0 0 0 0 0 0 0 0 E0h

EIE(1,4) 1 1 1 0 0 0 0 0 E8h

B 0 0 0 0 0 0 0 0 F0h

EIP(1,4) 1 1 1 0 0 0 0 0 F8h

(1) Not part of standard 8051 architecture.

(2) Present only when Timer 2 is implemented (timer2 = 1).

(3) Present only when Serial Port 0 is implemented (serial > 0).

(4) Present only when the extended interrupt unit is implemented (extd_intr = 1).

(5) Present only when Serial Port 1 is implemented (serial = 2).

81h SP Stack Pointer

D0h PSW Program Status Word (Table 2-8)

Table 2-7 Special Function Register Reset Values(continued)

Register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 
0

Add
r

2-32

DW8051 Architectural Overview



Table 2-8 lists the functions of the bits in the PSW SFR. Detailed 
descriptions of the remaining SFRs appear with the associated 
hardware descriptions in Chapter 3 of this databook. 

E0h ACC Accumulator Register

F0h B B Register

Table 2-8 PSW Register – SFR D0h 

Bit Function

PSW.7 CY – Carry flag. Set to 1 when the last arithmetic operation resulted in a
carry (during addition) or borrow (during subtraction), otherwise cleared to 0 by all 
arithmetic operations.

PSW.6 AC – Auxiliary carry flag. Set to 1 when the last arithmetic operation resulted in a 
carry into (during addition) or borrow from (during subtraction) the high order nibble, 
otherwise cleared to 0 by all arithmetic operations. 

PSW.5 F0 – User flag 0. Bit-addressable, general purpose flag for software control.

PSW.4 RS1 – Register bank select bit 1. Used with RS0 to select a register blank in internal 
RAM.

PSW.3 RS0 – Register bank select bit 0, decoded as:
RS1     RS0     Bank Selected
0          0          Register bank 0, addresses 00h–07h
0          1          Register bank 1, addresses 08h–0Fh
1          0          Register bank 2, addresses 10h–17h
1          1         Register bank 3, addresses 18h–1Fh

PSW.2 OV – Overflow flag. Set to 1 when the last arithmetic operation resulted in a carry 
(addition), borrow (subtraction), or overflow (multiply or divide). Otherwise, the bit 
cleared to 0 by all arithmetic operations.

PSW.1 F1 – User flag 1. Bit-addressable, general purpose flag for software control.

PSW.0 P – Parity flag. Set to 1 when the modulo-2 sum of the 8 bits in the accumulator is 
1 (odd parity), cleared to 0 on even parity.
2-33

DW8051 Architectural Overview



2-34

DW8051 Architectural Overview



3
DW8051 Hardware Description 3

This chapter provides technical data about the DW8051 MacroCell 
hardware operation and timing. The topics are:

• Timers/Counters

• Serial Interface

• SFR Bus Peripheral Interface

• Interrupts

• Reset

• Power Saving Modes
3-1

DW8051 Hardware Description



Timers/Counters

The DW8051 includes two timer/counters (Timer 0 and Timer 1) and 
an optional third timer/counter (Timer 2). Timer 2 is present when the 
parameter timer2 = 1. Each timer/counter can operate as either a 
timer with a clock rate based on the clk pin, or as an event counter 
clocked by the t0 pin (Timer 0), t1 pin (Timer 1), or the t2 pin (Timer 2).

Each timer/counter consists of a 16-bit register that is accessible to 
software as two SFRs:

• Timer 0 – TL0 and TH0

• Timer 1 – TL1 and TH1

• Timer 2 – TL2 and TH2

803x/805x Compatibility

In general, when timer2 = 1, the implementation of the timers/
counters is similar to that of the Dallas Semiconductor DS80C320. 
Table 3-1 summarizes the differences in timer/counter 
implementation between the Intel 8051, the Dallas Semiconductor 
DS80C320, and the DesignWare DW8051 MacroCell.

Table 3-1 Timer/Counter Implementation Comparison

Feature Intel 8051 Dallas DS80C320 DW8051

Number of timers 2 3 2 or 3

Timer 0/1 overflow 
available as output signals

not implemented not implemented t0_out, t1_out
(one clk pulse)

Timer 2 output enable n/a implemented not implemented

Timer 2 downcount enable n/a implemented not implemented
3-2

DW8051 Hardware Description



Timers 0 and 1

Timers 0 and 1 each operate in four modes, as controlled through the 
TMOD SFR (Table 3-2) and the TCON SFR (Table 3-3). The four 
modes are:

• 13-bit timer/counter (mode 0)

• 16-bit timer/counter (mode 1)

• 8-bit counter with auto-reload (mode 2)

• Two 8-bit counters (mode 3, Timer 0 only)

Timer 2 overflow available 
as output signal

n/a implemented t2_out
(one clk pulse)

Table 3-2 TMOD Register – SFR 89h 

Bit Function

TMOD.7 GATE – Timer 1 gate control. When GATE = 1, Timer 1 will clock only when 
int1_n = 1 and TR1 (TCON.6) = 1. When GATE = 0, Timer 1 will clock only when 
TR1 = 1, regardless of the state of int1_n.

TMOD.6 C/T – Counter/Timer select. When C/T = 0, Timer 1 is clocked by clk/4 or clk/12, 
depending on the state of T1M (CKCON.4). When C/T = 1, Timer 1 is clocked by 
the t1 pin.

TMOD.5 M1 – Timer 1 mode select bit 1.

TMOD.4 M0 – Timer 1 mode select bit 0, decoded as:

M1M0Mode
0 0Mode 0 : 13-bit counter
0 1Mode 1 : 16-bit counter
1 0Mode 2 : 8-bit counter with auto-reload
1 1Mode 3 : Two 8-bit counters

Table 3-1 Timer/Counter Implementation Comparison

Feature Intel 8051 Dallas DS80C320 DW8051
3-3

DW8051 Hardware Description



TMOD.3 GATE – Timer 0 gate control. When GATE = 1, Timer 0 will clock only when 
int0_n = 1 and TR0 (TCON.4) = 1. When GATE = 0, Timer 0 will clock only when 
TR0 = 1, regardless of the state of int0_n.

TMOD.2 C/T – Counter/Timer select. When C/T = 0, Timer 0 is clocked by clk/4 or clk/12, 
depending on the state of T0M (CKCON.3). When C/T = 1, Timer 0 is clocked by 
the t0 pin.

TMOD.1 M1 – Timer 0 mode select bit 1.

TMOD.0 M0 – Timer 0 mode select bit 0, decoded as:

M1M0Mode
0 0Mode 0 : 13-bit counter
0 1Mode 1 : 16-bit counter
1 0Mode 2 : 8-bit counter with auto-reload
1 1Mode 3 : Two 8-bit counters

Table 3-3 TCON Register – SFR 88h 

Bit Function

TCON.7 TF1 – Timer 1 overflow flag. Set to 1 when the Timer 1 count overflows and cleared 
when the CPU vectors to the interrupt service routine.

TCON.6 TR1 – Timer 1 run control. Set to 1 to enable counting on Timer 1.

TCON.5 TF0 – Timer 0 overflow flag. Set to 1 when the Timer 0 count overflows and cleared 
when the CPU vectors to the interrupt service routine.

TCON.4 TR0 – Timer 0 run control. Set to 1 to enable counting on Timer 0.

Table 3-2 TMOD Register – SFR 89h 

Bit Function
3-4

DW8051 Hardware Description



Mode 0

Mode 0 operation, illustrated in Figure 3-1, is the same for Timer 0 
and Timer 1. In mode 0, the timer is configured as a 13-bit counter 
that uses bits 0–4 of TL0 (or TL1) and all 8 bits of TH0 (or TH1). The 
timer enable bit (TR0/TR1) in the TCON SFR starts the timer. The 
C/T bit selects the timer/counter clock source, clk or t0/t1.

TCON.3 IE1 – Interrupt 1 edge detect. If external interrupt 1 is configured to be 
edge-sensitive (IT1 = 1), IE1 is set by hardware when a negative edge is detected 
on the int1_n pin and is automatically cleared when the CPU vectors to the 
corresponding interrupt service routine. In edge-sensitive mode, IE1 can also be 
cleared by software.

If external interrupt 1 is configured to be level-sensitive (IT1 = 0), IE1 is set when 
the int1_n pin is low and cleared when the int1_n pin is high. In level-sensitive 
mode, software cannot write to IE1.

TCON.2 IT1 – Interrupt 1 type select. When IT1 = 1, the DW8051 detects int1_n on the 
falling edge (edge-sensitive). When IT1 = 0, the DW8051 detects int1_n as a low 
level (level-sensitive).

TCON.1 IE0 – Interrupt 0 edge detect. If external interrupt 0 is configured to be 
edge-sensitive (IT0 = 1), IE0 is set by hardware when a negative edge is detected 
on the int0_n pin and is automatically cleared when the CPU vectors to the 
corresponding interrupt service routine. In edge-sensitive mode, IE0 can also be 
cleared by software.

If external interrupt 0 is configured to be level-sensitive (IT0 = 0), IE0 is set when 
the int0_n pin is low and cleared when the int0_n pin is high. In level-sensitive 
mode, software cannot write to IE0.

TCON.0 IT0 – Interrupt 0 type select. When IT1 = 1, the DW8051 detects int0_n on the 
falling edge (edge-sensitive). When IT1 = 0, the DW8051 detects int0_n as a low 
level (level-sensitive).

Table 3-3 TCON Register – SFR 88h 

Bit Function
3-5

DW8051 Hardware Description



The timer counts transitions from the selected source as long as the 
GATE bit is 0, or the GATE bit is 1 and the corresponding interrupt 
pin (int0_n or int1_n) is deasserted.

When the 13-bit count increments from 1FFFh (all ones), the counter 
rolls over to all zeros, the TF0 (or TF1) bit is set in the TCON SFR, 
and the t0_out (or t1_out) pin goes high for one clock cycle.

The upper 3 bits of TL0 (or TL1) are indeterminate in mode 0 and 
must be masked when the software evaluates the register.

Mode 1

Mode 1 operation is the same for Timer 0 and Timer 1. In mode 1, 
the timer is configured as a 16-bit counter. As illustrated in Figure 
3-1, all 8 bits of the LSB register (TL0 or TL1) are used. The counter 
rolls over to all zeros when the count increments from FFFFh. 
Otherwise, mode 1 operation is the same as mode 0.

Figure 3-1 Timer 0/1 – Modes 0 and 1

TL0 (or TL1)
0 74

Divide by 12

Divide by 4

clk

t0 (or t1)

TR0 (or TR1)

GATE

int0_n
(or int1_n)

CLK

70

TF0 (or TF1) INT

TH0 (or TH1)

T0M (or T1M)

C/T

Mode 0

Mode 1

0

1 0

1

To Serial Port 
(Timer 1 only)
3-6

DW8051 Hardware Description



Mode 2

Mode 2 operation is the same for Timer 0 and Timer 1. In mode 2, 
the timer is configured as an 8-bit counter, with automatic reload of 
the start value. The LSB register (TL0 or TL1) is the counter and the 
MSB register (TH0 or TH1) stores the reload value.

As illustrated in Figure 3-2, mode 2 counter control is the same as 
for mode 0 and mode 1. However, in mode 2, when TLn increments 
from FFh, the value stored in THn is reloaded into TLn.

Figure 3-2 Timer 0/1 – Mode 2

Mode 3

In mode 3, Timer 0 operates as two 8-bit counters and Timer 1 stops 
counting and holds its value.

TL0 (or TL1)
0 7

Divide by 12

Divide by 4

clk

t0 (or t1)

TR0 (or TR1)

GATE

int0_n
(or int1_n)

CLK

70

TF0 (or TF1)

TH0 (or TH1)

T0M (or T1M)

C/T

RELOAD

INT

0

1 0

1

To Serial Port 
(Timer 1 only)
3-7

DW8051 Hardware Description



As shown in Figure 3-3, TL0 is configured as an 8-bit counter 
controlled by the normal Timer 0 control bits. TL0 can either count 
clk cycles (divided by 4 or by 12) or high-to-low transitions on t0, as 
determined by the C/T bit. The GATE function can be used to give 
counter enable control to the int0_n signal.

TH0 functions as an independent 8-bit counter. However, TH0 can 
only count clk cycles (divided by 4 or by 12). The Timer 1 control and 
flag bits (TR1 and TF1) are used as the control and flag bits for TH0.

When Timer 0 is in mode 3, Timer 1 has limited usage because Timer 
0 uses the Timer 1 control bit (TR1) and interrupt flag (TF1). Timer 1 
can still be used for baud rate generation and the Timer 1 count values 
are still available in the TL1 and TH1 registers.

Control of Timer 1 when Timer 0 is in mode 3 is through the Timer 1 
mode bits. To turn Timer 1 on, set Timer 1 to mode 0, 1, or 2. To turn 
Timer 1 off, set it to mode 3. The Timer 1 C/T bit and T1M bit are still 
available to Timer 1. Therefore, Timer 1 can count clk/4, clk/12, or 
high-to-low transitions on the t1 pin. The Timer 1 GATE function is 
also available when Timer 0 is in mode 3.
3-8

DW8051 Hardware Description



Figure 3-3 Timer 0 – Mode 3

Timer Rate Control

The default timer clock scheme for the DW8051 timers is 12 clk cycles 
per increment, the same as in the standard 8051. However, in the 
DW8051, the instruction cycle is 4 clk cycles.

Using the default rate (12 clocks per timer increment) allows existing 
application code with real-time dependencies, such as baud rate, to 
operate properly. However, applications that require fast timing can 
set the timers to increment every 4 clk cycles by setting bits in the 
Clock Control register (CKCON) at SFR location 8Eh (see Table 3-4).

The CKCON bits that control the timer clock rates are:

CKCON bit Counter/Timer

5 Timer 2

4 Timer 1

TL00 7

Divide by 12

Divide by 4

clk

t0

TR0

GATE

int0_n

CLK

70

TF0

TH0

T0M

C/T

INT

TR1

TF1 INT

0

1 0

1

3-9

DW8051 Hardware Description



When a CKCON register bit is set to 1, the associated counter 
increments at 4-clk intervals. When a CKCON bit is cleared, the 
associated counter increments at 12-clk intervals. The timer controls 
are independent of each other. The default setting for all three timers 
is 0 (12-clk intervals). These bits have no effect in counter mode.

Timer 2

Timer 2 is present only when the timer2 parameter is set to 1. When 
present, Timer 2 runs only in 16-bit mode and offers several 
capabilities not available with Timers 0 and 1. The modes available 
with Timer 2 are:

• 16-bit timer/counter

• 16-bit timer with capture

3 Timer 0

Table 3-4 CKCON Register – SFR 8Eh

Bit Function

CKCON.7,6 Reserved

CKCON.5 T2M – Timer 2 clock select. When T2M = 0, Timer 2 uses clk/12 (for 
compatibility with 80C32); when T2M = 1, Timer 2 uses clk/4. This bit has 
no effect when Timer 2 is configured for baud rate generation.

CKCON.4 T1M – Timer 1 clock select. When T1M = 0, Timer 1 uses clk/12 (for 
compatibility with 80C32); when T1M = 1, Timer 1 uses clk/4.

CKCON.3 T0M – Timer 0 clock select. When T0M = 0, Timer 0 uses clk/12 (for 
compatibility with 80C32); when T0M = 1, Timer 0 uses clk/4.

CKCON.2–0 MD2, MD1, MD0 – Control the number of cycles to be used for external 
MOVX instructions. See “Stretch Memory Cycles” in Chapter 2 for details.
3-10

DW8051 Hardware Description



• 16-bit auto-reload timer/counter

• Baud rate generator

The SFRs associated with Timer 2 are:

• T2CON – SFR C8h (Table 3-5)

• RCAP2L – SFR CAh – Used to capture the TL2 value when Timer 
2 is configured for capture mode, or as the LSB of the 16-bit reload 
value when Timer 2 is configured for auto-reload mode.

• RCAP2H – SFR CBh – Used to capture the TH2 value when Timer 
2 is configured for capture mode, or as the MSB of the 16-bit 
reload value when Timer 2 is configured for auto-reload mode.

• TL2 – SFR CCh – Lower 8 bits of the 16-bit count.

• TH2 – SFR CDh – Upper 8 bits of the 16-bit count.

Table 3-5 T2CON Register – SFR C8h

Bit Function

T2CON.7 TF2 – Timer 2 overflow flag. Hardware will set TF2 when Timer 2 overflows from 
FFFFh. TF2 must be cleared to 0 by the software. TF2 will only be set to a 1 if 
RCLK and TCLK are both cleared to 0. Writing a 1 to TF2 forces a Timer 2 interrupt 
if enabled.

T2CON.6 EXF2 – Timer 2 external flag. Hardware will set EXF2 when a reload or capture 
is caused by a high-to-low transition on the t2ex pin, and EXEN2 is set. EXF2 
must be cleared to 0 by the software. Writing a 1 to EXF2 forces a Timer 2 interrupt 
if enabled.

T2CON.5 RCLK – Receive clock flag. Determines whether Timer 1 or Timer 2 is used for 
Serial Port 0 timing of received data in serial mode 1 or 3. RCLK =1 selects Timer 
2 overflow as the receive clock. RCLK = 0 selects Timer 1 overflow as the receive 
clock.
3-11

DW8051 Hardware Description



Timer 2 Mode Control

Table 3-6 summarizes how the SFR bits determine the Timer 2 mode.

T2CON.4 TCLK – Transmit clock flag. Determines whether Timer 1 or Timer 2 is used for 
Serial Port 0 timing of transmit data in serial mode 1 or 3. TCLK =1 selects Timer 
2 overflow as the transmit clock. TCLK = 0 selects Timer 1 overflow as the transmit 
clock.

T2CON.3 EXEN2 – Timer 2 external enable. EXEN2 = 1 enables capture or reload to occur 
as a result of a high-to-low transition on t2ex, if Timer 2 is not generating baud 
rates for the serial port. EXEN2 = 0 causes Timer 2 to ignore all external events 
at t2ex.

T2CON.2 TR2 – Timer 2 run control flag. TR2 = 1 starts Timer 2. TR2 = 0 stops Timer 2.

T2CON.1 C/T2 – Counter/timer select. C/T2 = 0 selects a timer function for Timer 2. C/
T2 = 1 selects a counter of falling transitions on the t2 pin. When used as a timer, 
Timer 2 runs at 4 clocks per increment or 12 clocks per increment as programmed 
by CKCON.5, in all modes except baud rate generator mode. When used in baud 
rate generator mode, Timer 2 runs at 2 clocks per increment, independent of the 
state of CKCON.5.

T2CON.0 CP/RL2 – Capture/reload flag. When CP/RL2 = 1, Timer 2 captures occur on 
high-to-low transitions of t2ex, if EXEN2 = 1. When CP/RL2 = 0, auto-reloads 
occur when Timer 2 overflows or when high-to-low transitions occur on t2ex, if 
EXEN2 = 1. If either RCLK or TCLK is set to 1, CP/RL2 will not function and Timer 
2 will operate in auto-reload mode following each overflow.

Table 3-6 Timer 2 Mode Control Summary

RCLK TCLK CP/RL2 TR2 Mode

0 0 1 1 16-bit timer/counter with capture

0 0 0 1 16-bit timer/counter with auto-reload

1 X X 1 Baud rate generator

Table 3-5 T2CON Register – SFR C8h

Bit Function
3-12

DW8051 Hardware Description



16-Bit Timer/Counter Mode

Figure 3-4 illustrates how Timer 2 operates in timer/counter mode 
with the optional capture feature. The C/T2 bit determines whether 
the 16-bit counter counts clk cycles (divided by 4 or 12), or high-to-low 
transitions on the t2 pin. The TR2 bit enables the counter. When the 
count increments from FFFFh, the TF2 flag is set, and t2_out goes 
high for one clk cycle.

Figure 3-4 Timer 2 – Timer/Counter with Capture

X 1 X 1 Baud rate generator

X X X 0 Off

X = Don’t care.

Table 3-6 Timer 2 Mode Control Summary

RCLK TCLK CP/RL2 TR2 Mode

0 7

Divide by 12

Divide by 4

clk

t2

TR2

CLK

70

EXF2

T2M

C/T2

INT

RCAP2L RCAP2H

TL2 TH2
8 15

8 15

EXEN2

t2ex

CAPTURE
TF2

0

1 0

1

3-13

DW8051 Hardware Description



16-Bit Timer/Counter Mode with Capture

The Timer 2 capture mode (Figure 3-4) is the same as the 16-bit timer/
counter mode, with the addition of the capture registers and control 
signals.

The CP/RL2 bit in the T2CON SFR enables the capture feature. When 
CP/RL2 = 1, a high-to-low transition on t2ex when EXEN2 = 1 causes 
the Timer 2 value to be loaded into the capture registers (RCAP2L 
and RCAP2H).

16-Bit Timer/Counter Mode with Auto-Reload

When CP/RL2 = 0, Timer 2 is configured for the auto-reload mode 
illustrated in Figure 3-5. Control of counter input is the same as for 
the other 16-bit counter modes. When the count increments from 
FFFFh, Timer 2 sets the TF2 flag and the starting value is reloaded 
into TL2 and TH2. The software must preload the starting value into 
the RCAP2L and RCAP2H registers.

When Timer 2 is in auto-reload mode, a reload can be forced by a 
high-to-low transition on the t2ex pin, if enabled by EXEN2 = 1.
3-14

DW8051 Hardware Description



Figure 3-5 Timer 2 – Timer/Counter with Auto-Reload

Baud Rate Generator Mode

Setting either RCLK or TCLK to 1 configures Timer 2 to generate 
baud rates for Serial Port 0 in serial mode 1 or 3. In baud rate 
generator mode, Timer 2 functions in auto-reload mode. However, 
instead of setting the TF2 flag, the counter overflow generates a shift 
clock for the serial port function. As in normal auto-reload mode, the 
overflow also causes the preloaded start value in the RCAP2L and 
RCAP2H registers to be reloaded into the TL2 and TH2 registers.

When either TCLK = 1 or RCLK = 1, Timer 2 is forced into auto-reload 
operation, regardless of the state of the CP/RL2 bit.

When operating as a baud rate generator, Timer 2 does not set the 
TF2 bit. In this mode, a Timer 2 interrupt can only be generated by a 
high-to-low transition on the t2ex pin setting the EXF2 bit, and only if 
enabled by EXEN2 = 1.

0 7

Divide by 12

Divide by 4

clk

t2

TR2

CLK

70

EXF2

T2M

C/T2

INT

RCAP2L RCAP2H

TL2 TH2
8 15

8 15

EXEN2

t2ex

TF2

0

1 0

1

3-15

DW8051 Hardware Description



The counter time base in baud rate generator mode is clk/2. To use 
an external clock source, set C/T2 to 1 and apply the desired clock 
source to the t2 pin.

Figure 3-6 Timer 2 – Baud Rate Generator Mode

Serial Interface

The DW8051 provides two optional serial ports. Serial Port 0 is 
identical in operation to the standard 8051 serial port. Serial Port 1 
is identical to Serial Port 0, except that Timer 2 cannot be used as 
the baud rate generator for Serial Port 1.

The serial parameter determines how many serial ports are present 
(0, 1, or 2). The extended interrupt unit is required to handle interrupt 
requests from Serial Port 1. However, if the standard interrupt unit is 
used, Serial Port 1 can still be used by software polling of the RI_1 
and TI_1 flags.

0 7

Divide 
by 2clk

t2

TR2

CLK

70

EXF2

C/T2

TIMER 2 INTERRUPT

RCAP2L RCAP2H

TL2 TH2
8 15

8 15
EXEN2

t2ex

Divide 
by 2

TIMER 1 OVERFLOW

Divide 
by 16

Divide 
by 16

RX 
CLOCK

TX 
CLOCK

SMOD0

RCLK

TCLK

0

0

0

0

1

1

1

1

3-16

DW8051 Hardware Description



Each serial port can operate in synchronous or asynchronous mode. 
In synchronous mode, the DW8051 generates the serial clock and 
the serial port operates in half-duplex mode. In asynchronous mode, 
the serial port operates in full-duplex mode. In all modes, the DW8051 
buffers received data in a holding register, enabling the UART to 
receive an incoming word before the software has read the previous 
value.

Each serial port can operate in one of four modes, as outlined in 
Table 3-7.

The SFRs associated with the serial ports are:

• SCON0 – SFR 98h – Serial Port 0 control (Table 3-8).

• SBUF0 – SFR 99h – Serial Port 0 buffer.

• SCON1 – SFR C0h – Serial Port 1 control (Table 3-9).

• SBUF1 – SFR C1h – Serial Port 1 buffer.

Table 3-7 Serial Port Modes

Mode Sync/Async Baud Clock Data 
Bits

Start/Stop 9th Bit Function

0 Sync clk/4 or clk/12 8 None None

1 Async Timer 1 or 
Timer 2(1)

8 1 start, 1 stop None

2 Async clk/32 or clk/64 9 1 start, 1 stop 0, 1, parity

3 Async Timer 1 or 
Timer 2(1)

9 1 start, 1 stop 0, 1, parity

(1) Timer 2 available for Serial Port 0 only.
3-17

DW8051 Hardware Description



Table 3-8 SCON0 Register – SFR 98h

Bit Function

SCON0.7 SM0_0 – Serial Port 0 mode bit 0.

SCON0.6 SM1_0 – Serial Port 0 mode bit 1, decoded as:

SM0_0SM1_0Mode
0 0 0
0 1 1
1 0 2
1 1 3

SCON0.5 SM2_0 – Multiprocessor communication enable. In modes 2 and 3, SM2_0 
enables the multiprocessor communication feature. If SM2_0 = 1 in mode 2 or 
3, RI_0 will not be activated if the received 9th bit is 0. If SM2_0 = 1 in mode 1, 
RI_0 will only be activated if a valid stop is received. In mode 0, SM2_0 
establishes the baud rate: when SM2_0 = 0, the baud rate is clk/12; when 
SM2_0 = 1, the baud rate is clk/4.

SCON0.4 REN_0 – Receive enable. When REN_0 = 1, reception is enabled.

SCON0.3 TB8_0 – Defines the state of the 9th data bit transmitted in modes 2 and 3.

SCON0.2 RB8_0 – In modes 2 and 3, RB8_0 indicates the state of the 9th bit received. 
In mode 1, RB8_0 indicates the state of the received stop bit. In mode 0, RB8_0 
is not used.

SCON0.1 TI_0 – Transmit interrupt flag. Indicates that the transmit data word has been 
shifted out. In mode 0, TI_0 is set at the end of the 8th data bit. In all other 
modes, TI_0 is set when the stop bit is placed on the txd0 pin. TI_0 must be 
cleared by the software.
3-18

DW8051 Hardware Description



Table 3-9 SCON1 Register – SFR C0h

Bit Function

SCON1.7 SM0_1 – Serial Port 1 mode bit 0.

SCON1.6 SM1_1 – Serial Port 1 mode bit 1, decoded as:

SM0_1SM1_1Mode
0 0 0
0 1 1
1 0 2
1 1 3

SCON1.5 SM2_1 – Multiprocessor communication enable. In modes 2 and 3, SM2_1 
enables the multiprocessor communication feature. If SM2_1 = 1 in mode 2 or 
3, RI_1 will not be activated if the received 9th bit is 0. If SM2_1 = 1 in mode 
1, RI_1 will only be activated if a valid stop is received. In mode 0, SM2_1 
establishes the baud rate: when SM2_1 = 0, the baud rate is clk/12; when 
SM2_1 = 1, the baud rate is clk/4.

SCON1.4 REN_1 – Receive enable. When REN_1 = 1, reception is enabled.

SCON1.3 TB8_1 – Defines the state of the 9th data bit transmitted in modes 2 and 3.

SCON1.2 RB8_1 – In modes 2 and 3, RB8_1 indicates the state of the 9th bit received. 
In mode 1, RB8_1 indicates the state of the received stop bit. In mode 0, RB8_1 
is not used.

SCON1.1 TI_1 – Transmit interrupt flag. Indicates that the transmit data word has been 
shifted out. In mode 0, TI_1 is set at the end of the 8th data bit. In all other 
modes, TI_1 is set when the stop bit is placed on the txd1 pin. TI_1 must be 
cleared by the software.

SCON1.0 RI_1 – Receive interrupt flag. Indicates that a serial data word has been 
received. In mode 0, RI_1 is set at the end of the 8th data bit. In mode 1, RI_1 
is set after the last sample of the incoming stop bit, subject to the state of SM2_1. 
In modes 2 and 3, RI_1 is set at the end of the last sample of RB8_1. RI_1 
must be cleared by the software.
3-19

DW8051 Hardware Description



803x/805x Compatibility

In general, when serial = 2, the implementation of the serial interface 
is similar to that of the Dallas Semiconductor DS80C320. Table 3-10 
summarizes the differences in serial interface implementation 
between the Intel 8051, the Dallas Semiconductor DS80C320, and 
the DesignWare DW8051 MacroCell.

Mode 0

Serial mode 0 provides synchronous, half-duplex serial 
communication. For Serial Port 0, serial data output occurs on 
rxd0_out, serial data is received on rxd0_in, and txd0 provides the 
shift clock for both transmit and receive. For Serial Port 1, the 
corresponding pins are rxd1_out, rxd1_in, and txd1.

The serial mode 0 baud rate is either clk/12 or clk/4, depending on 
the state of the SM2_0 bit (or SM2_1 for Serial Port 1). When 
SM2_0 = 0, the baud rate is clk/12; when SM2_0 = 1, the baud rate 
is clk/4.

Table 3-10 Serial Interface Implementation Comparison

Feature Intel 8051 Dallas 
DS80C320

DW8051

Number of serial ports 1 2 0, 1, or 2

Framing error detection not implemented implemented not implemented

Slave address comparison for 
multiprocessor communication

not implemented implemented not implemented
3-20

DW8051 Hardware Description



Mode 0 operation is identical to the standard 8051. Data transmission 
begins when an instruction writes to the SBUF0 (or SBUF1) SFR. 
The UART shifts the data out, LSB first, at the selected baud rate, 
until the 8-bit value has been shifted out.

Mode 0 data reception begins when the REN_0 (or REN_1) bit is set 
and the RI_0 (or RI_1) bit is cleared in the corresponding SCON SFR. 
The shift clock is activated and the UART shifts data in on each rising 
edge of the shift clock until 8 bits have been received. One machine 
cycle after the 8th bit is shifted in, the RI_0 (or RI_1) bit is set and 
reception stops until the software clears the RI bit.

Figure 3-7 through Figure 3-10 illustrate Serial Port Mode 0 transmit 
and receive timing for both low-speed (clk/12) and high-speed 
(clk/4) operation.
3-21

DW8051 Hardware Description



Figure 3-7 Serial Port Mode 0 Receive Timing – Low Speed Operation

Figure 3-8 Serial Port Mode 0 Receive Timing – High Speed Operation

D0 D1 D2 D3 D4 D5 D6 D7

clk

RI

txd0

rxd0_in

rxd0_out

mem_psrd_n

mem_ale

TI

D0 D1 D2 D3 D4 D5 D6 D7

clk

RI

txd0

rxd0_in

rxd0_out

mem_psrd_n

mem_ale

TI
3-22

DW8051 Hardware Description



Figure 3-9 Serial Port Mode 0 Transmit Timing – Low Speed Operation

Figure 3-10 Serial Port Mode 0 Transmit Timing – High Speed Operation

Mode 1

Mode 1 provides standard asynchronous, full-duplex communication, 
using a total of 10 bits: 1 start bit, 8 data bits, and 1 stop bit. For 
receive operations, the stop bit is stored in RB8_0 (or RB8_1). Data 
bits are received and transmitted LSB first.

clk

RI

txd0

rxd0_in

rxd0_out

mem_psrd_n

mem_ale

TI

D0 D1 D2 D3 D4 D5 D6 D7

clk

RI

txd0

rxd0_in

rxd0_out

mem_psrd_n

mem_ale

TI

D0 D1 D2 D3 D4 D5 D6 D7
3-23

DW8051 Hardware Description



Mode 1 Baud Rate

The mode 1 baud rate is a function of timer overflow. Serial Port 0 
can use either Timer 1 or Timer 2 to generate baud rates. Serial Port 
1 can only use Timer 1. The two serial ports can run at the same baud 
rate if they both use Timer 1, or different baud rates if Serial Port 0 
uses Timer 2 and Serial Port 1 uses Timer 1.

Each time the timer increments from its maximum count (FFh for 
Timer 1 or FFFFh for Timer 2), a clock is sent to the baud rate circuit. 
The clock is then divided by 16 to generate the baud rate.

When using Timer 1, the SMOD0 (or SMOD1) bit selects whether or 
not to divide the Timer 1 rollover rate by 2. Therefore, when using 
Timer 1, the baud rate is determined by the equation:

SMOD0 is SFR bit PCON.7; SMOD1 is SFR bit EICON.7.

When using Timer 2, the baud rate is determined by the equation:

To use Timer 1 as the baud rate generator, it is best to use Timer 1 
mode 2 (8-bit counter with auto-reload), although any counter mode 
can be used. The Timer 1 reload value is stored in the TH1 register, 
which makes the complete formula for Timer 1:

x Timer 1 OverflowBaud Rate =
32
2

SMODx

Timer 2 Overflow
Baud Rate =

16
3-24

DW8051 Hardware Description



The 12 in the denominator in the above equation can be changed to 
4 by setting the T1M bit in the CKCON SFR. To derive the required 
TH1 value from a known baud rate (when TM1 = 0), use the equation:

You can also achieve very low serial port baud rates from Timer 1 by 
enabling the Timer 1 interrupt, configuring Timer 1 to mode 1, and 
using the Timer 1 interrupt to initiate a 16-bit software reload. Table 
3-11 lists sample reload values for a variety of common serial port 
baud rates.

Table 3-11 Timer 1 Reload Values for Common Serial Port Mode 1 Baud 
Rates

Desired
Baud 
Rate

SMODx C/T Timer 1 
Mode

TH1 Value
 for 
33-MHz clk

TH1 Value
 for 
25-MHz clk

TH1 Value 
for 
11.0592-MHz clk

57.6 Kb/s 1 0 2 FDh FEh FFh

19.2 Kb/s 1 0 2 F7h F9h FDh

9.6 Kb/s 1 0 2 EEh F2h FAh

4.8 Kb/s 1 0 2 DCh E5h F4h

2.4 Kb/s 1 0 2 B8h CAh E8h

1.2 Kb/s 1 0 2 71h 93h D0h

xBaud Rate =
32
2

SMODx

12 x (256 – TH1)

clk

xTH1 = 2
SMODx

clk

384 x Baud Rate
256 –
3-25

DW8051 Hardware Description



To use Timer 2 as the baud rate generator, configure Timer 2 in 
auto-reload mode and set the TCLK and/or RCLK bits in the T2CON 
SFR. TCLK selects Timer 2 as the baud rate generator for the 
transmitter; RCLK selects Timer 2 as the baud rate generator for the 
receiver. The 16-bit reload value for Timer 2 is stored in the RCAP2L 
and RCA2H SFRs, which makes the equation for the Timer 2 baud 
rate:

where RCAP2H,RCAP2L is the content of RCAP2H and RCAP2L 
taken as a 16-bit unsigned number.

The 32 in the denominator is the result of the clk being divided by 2 
and the Timer 2 overflow being divided by 16. Setting TCLK or RCLK 
to 1 automatically causes the clk to be divided by 2, as shown in 
Figure 3-6, instead of the 4 or 12 determined by the T2M bit in the 
CKCON SFR.

To derive the required RCAP2H and RCAP2L values from a known 
baud rate, use the equation:

Baud Rate =
32 x (65536 – RCAP2H,RCAP2L)

clk

RCAP2H,RCAP2L = clk

32 x Baud Rate
65536 –
3-26

DW8051 Hardware Description



Table 3-12 lists sample values of RCAP2L and RCAP2H for a variety 
of desired baud rates.

When either RCLK or TCLK is set, the TF2 flag will not be set on a 
Timer 2 rollover, and the t2ex reload trigger is disabled.

Mode 1 Transmit

Figure 3-11 illustrates the mode 1 transmit timing. In mode 1, the 
UART begins transmitting after the first rollover of the divide-by-16 
counter after the software writes to the SBUF0 (or SBUF1) register. 
The UART transmits data on the txd0 (or txd1) pin in the following 
order: start bit, 8 data bits (LSB first), stop bit. The TI_0 (or TI_1) bit 
is set 2 clk cycles after the stop bit is transmitted.

Table 3-12 Timer 2 Reload Values for Common Serial Port Mode 1 Baud 
Rates

Baud Rate C/T2 33-M
Hz 
clk
RCA
P2H

33-M
Hz 
clk
RCA
P2L

25-MHz 
clk
RCAP2H

25-MHz 
clk
RCAP2L

11.0592-
MHz clk
RCAP2H

11.0592-M
Hz clk
RCAP2L

57.6 Kb/s 0 FFh EEh FFh F2h FFh FAh

19.2 Kb/s 0 FFh CAh FFh D7h FFh EEh

9.6 Kb/s 0 FFh 95h FFh AFh FFh DCh

4.8 Kb/s 0 FFh 29h FFh 5Dh FFh B8h

2.4 Kb/s 0 FEh 52h FEh BBh FFh 70h

1.2 Kb/s 0 FCh A5h FDh 75h FEh E0h
3-27

DW8051 Hardware Description



Mode 1 Receive

Figure 3-12 illustrates the mode 1 receive timing. Reception begins 
at the falling edge of a start bit received on rxd0_in (or rxd1_in), when 
enabled by the REN_0 (or REN_1) bit. For this purpose, rxd0_in (or 
rxd1_in) is sampled 16 times per bit for any baud rate. When a falling 
edge of a start bit is detected, the divide-by-16 counter used to 
generate the receive clock is reset to align the counter rollover to the 
bit boundaries.

For noise rejection, the serial port establishes the content of each 
received bit by a majority decision of 3 consecutive samples in the 
middle of each bit time. This is especially true for the start bit. If the 
falling edge on rxd0_in (or rxd1_in) is not verified by a majority 
decision of 3 consecutive samples (low), then the serial port stops 
reception and waits for another falling edge on rxd0_in (or rxd1_in).

At the middle of the stop bit time, the serial port checks for the 
following conditions:

• RI_0 (or RI_1) = 0, and

• If SM2_0 (or SM2_1) = 1, the state of the stop bit is 1.
(If SM2_0 (or SM2_1) = 0, the state of the stop bit doesn’t matter.)

If the above conditions are met, the serial port then writes the received 
byte to the SBUF0 (or SBUF1) register, loads the stop bit into RB8_0 
(or RB8_1), and sets the RI_0 (or RI_1) bit. If the above conditions 
are not met, the received data is lost, the SBUF register and RB8 bit 
are not loaded, and the RI bit is not set.

After the middle of the stop bit time, the serial port waits for another 
high-to-low transition on the (rxd0_in or rxd1_in) pin.
3-28

DW8051 Hardware Description



Mode 1 operation is identical to that of the standard 8051 when Timers 
1 and 2 use clk/12 (the default).

Figure 3-11 Serial Port 0 Mode 1 Transmit Timing   

Figure 3-12 Serial Port 0 Mode 1 Receive Timing

Write to 
SBUF0

RI_0

txd0

rxd0_in

rxd0_out

SHIFT

TX CLK

TI_0

D0 D1 D2 D3 D4 D5 D6 D7 STOPSTART

RI_0

txd0

rxd0_in

rxd0_out

SHIFT

RX CLK

TI_0

D0 D1 D2 D3 D4 D5 D6 D7 STOPSTART

Bit detector
sampling
3-29

DW8051 Hardware Description



Mode 2

Mode 2 provides asynchronous, full-duplex communication, using a 
total of 11 bits: 1 start bit, 8 data bits, a programmable 9th bit, and 1 
stop bit. The data bits are transmitted and received LSB first.  For 
transmission, the 9th bit is determined by the value in TB8_0 (or 
TB8_1). To use the 9th bit as a parity bit, move the value of the P bit 
(SFR PSW.0) to TB8_0 (or TB8_1).

The mode 2 baud rate is either clk/32 or clk/64, as determined by the 
SMOD0 (or SMOD1) bit. The formula for the mode 2 baud rate is:

Mode 2 operation is identical to the standard 8051.

Mode 2 Transmit

Figure 3-13 illustrates the mode 2 transmit timing. Transmission 
begins after the first rollover of the divide-by-16 counter following a 
software write to SBUF0 (or SBUF1). The UART shifts data out on 
the txd0 (or txd1) pin in the following order: start bit, data bits (LSB 
first), 9th bit, stop bit. The TI_0 (or TI_1) bit is set when the stop bit 
is placed on the txd0 (or txd1) pin.

Mode 2 Receive

Figure 3-14 illustrates the mode 2 receive timing. Reception begins 
at the falling edge of a start bit received on rxd0_in (or rxd1_in), when 
enabled by the REN_0 (or REN_1) bit. For this purpose, rxd0_in (or 
rxd1_in) is sampled 16 times per bit for any baud rate. When a falling 

xBaud Rate = 2
SMODx

clk

64
3-30

DW8051 Hardware Description



edge of a start bit is detected, the divide-by-16 counter used to 
generate the receive clock is reset to align the counter rollover to the 
bit boundaries.

For noise rejection, the serial port establishes the content of each 
received bit by a majority decision of 3 consecutive samples in the 
middle of each bit time. This is especially true for the start bit. If the 
falling edge on rxd0_in (or rxd1_in) is not verified by a majority 
decision of 3 consecutive samples (low), then the serial port stops 
reception and waits for another falling edge on rxd0_in (or rxd1_in).

At the middle of the stop bit time, the serial port checks for the 
following conditions:

• RI_0 (or RI1) = 0, and

• If SM2_0 (or SM2_1) = 1, the state of the stop bit is 1.
(If SM2_0 (or SM2_1) = 0, the state of the stop bit doesn’t matter.)

If the above conditions are met, the serial port then writes the received 
byte to the SBUF0 (or SBUF1) register, loads the 9th received bit into 
RB8_0 (or RB8_1), and sets the RI_0 (or RI_1) bit. If the above 
conditions are not met, the received data is lost, the SBUF register 
and RB8 bit are not loaded, and the RI bit is not set. After the middle 
of the stop bit time, the serial port waits for another high-to-low 
transition on the (rxd0_in or rxd1_in) pin.
3-31

DW8051 Hardware Description



Figure 3-13 Serial Port 0 Mode 2 Transmit Timing

Figure 3-14 Serial Port 0 Mode 2 Receive Timing

Mode 3

Mode 3 provides asynchronous, full-duplex communication, using a 
total of 11 bits: 1 start bit, 8 data bits, a programmable 9th bit, and 1 
stop bit. The data bits are transmitted and received LSB first.

RI_0

txd0

rxd0_in

rxd0_out

SHIFT

TX CLK

TI_0

D0 D1 D2 D3 D4 D5 D6 D7 STOPSTART TB8

Write to 
SBUF0

RI_0

txd0

rxd0_in

rxd0_out

SHIFT

RX CLK

TI_0

D0 D1 D2 D3 D4 D5 D6 D7 STOP
START RB8

Bit detector
 sampling
3-32

DW8051 Hardware Description



The mode 3 transmit and operations are identical to mode 2. The 
mode 3 baud rate generation is identical to mode 1. That is, mode 3 
is a combination of mode 2 protocol and mode 1 baud rate. 
Figure 3-15 illustrates the mode 3 transmit timing. Figure 3-16 
illustrates the mode 3 receive timing.

Mode 3 operation is identical to that of the standard 8051 when Timers 
1 and 2 use clk/12 (the default).

Figure 3-15 Serial Port 0 Mode 3 Transmit Timing

RI_0

txd0

rxd0_in

rxd0_out

SHIFT

TX CLK

TI_0

D0 D1 D2 D3 D4 D5 D6 D7 STOP
START TB8

Write to 
SBUF0
3-33

DW8051 Hardware Description



Figure 3-16 Serial Port 0 Mode 3 Receive Timing

Multiprocessor Communications

The multiprocessor communication feature is enabled in modes 2 
and 3 when the SM2 bit is set in the SCON SFR for a serial port 
(SM2_0 for Serial Port 0, SM2_1 for Serial Port 1). In multiprocessor 
communication mode, the 9th bit received is stored in RB8_0 (or 
RB8_1) and, after the stop bit is received, the serial port interrupt is 
activated only if RB8_0 (or RB8_1) = 1.

A typical use for the multiprocessor communication feature is when 
a master wants to send a block of data to one of several slaves. The 
master first transmits an address byte that identifies the target slave. 
When transmitting an address byte, the master sets the 9th bit to 1; 
for data bytes, the 9th bit is 0.

When SM2_0 (or SM2_1) = 1, no slave will be interrupted by a data 
byte. However, an address byte interrupts all slaves so that each 
slave can examine the received address byte to determine whether 
that slave is being addressed. Address decoding must be done by 
software during the interrupt service routine. The addressed slave 

RI_0

txd0

rxd0_in

rxd0_out

SHIFT

RX CLK

TI_0

D0 D1 D2 D3 D4 D5 D6 D7 STOP
START RB8

Bit detector
 sampling
3-34

DW8051 Hardware Description



clears its SM2_0 (or SM2_1) bit and prepares to receive the data 
bytes. The slaves that are not being addressed leave the SM2_0 (or 
SM2_1) bit set and ignore the incoming data bytes.

SFR Bus Peripheral Interface

The DW8051 accesses internal and external peripherals by using 
Special Function Registers (SFRs). The internal peripherals include 
the timer/counters, SFR RAM, interrupt unit, and the optional serial 
ports.

External SFR Bus

You can directly attach custom designed peripherals to the DW8051 
using the SFR interface signals sfr_data_in[7:0], sfr_data_out[7:0], 
sfr_addr[7:0], sfr_rd, and sfr_wr. SFR addresses that are not used 
for DW8051 internal SFRs are available for connecting external SFR 
peripherals. See Chapter 2 for a list of DW8051 internal SFRs.

The SFR bus is a synchronous 8-bit bus. All registers in the 
peripherals attached to this bus are memory mapped into the 
DW8051 SFR address space and can be accessed by DW8051_core 
in the same manner as any internal SFR.

The SFR bus can only be used for on-chip peripheral blocks. The 
SFR bus timing does not permit the attachment of off-chip peripheral 
blocks. The number of peripherals that can be attached to the SFR 
interface is limited only by the number of free SFR addresses and 
electrical timing considerations.
3-35

DW8051 Hardware Description



There are several benefits when you connect peripherals directly to 
the SFR bus. Peripheral registers will be mapped into the SFR 
address space and can take advantage of the DW8051 direct 
addressing modes. However, DW8051_core only reads sfr_data_in 
when sfr_addr does not match the address of any internal SFR. 
Otherwise, sfr_data_in is ignored.

The addresses of standard SFRs that are not built into DW8051_core 
because the associated internal peripheral has been excluded 
through parameter settings can be used for external SFR peripherals. 
However, this can cause code compatibility problems and is therefore 
not recommended. For example, the SBUF0 SFR is not built when 
the serial parameter = 0, and can therefore be used for an external 
SFR peripheral. However, software that depends on the SBUF0 SFR 
at address 99h will not function properly if SFR address 99h is used 
for an external device.

See Chapter 4 for an example of custom SFR peripheral integration 
and associated timing diagrams.

Bit Addressing

Bit addressing in SFR space is available at all SFR addresses that 
end with 0 or 8. For example, the PSW SFR at address D0h is 
bit-addressable. Table 3-13 lists the bit-addressable SFRs and their 
usage.

Table 3-13 Bit–Addressable SFRs

SFR Address Usage

80h Not present in DW8051_core, available for external SFR peripheral

88h TCON
3-36

DW8051 Hardware Description



Interrupts

The setting of the user-modifiable parameter extd_intr determines 
whether the DW8051 is built with the 6-source standard interrupt unit 
or the 13-source extended interrupt unit.

90h Not present in DW8051_core, available for external SFR peripheral

98h SCON0 when the serial parameter is 1 or 2, not present when serial = 0

A0h Not present in DW8051_core, available for external SFR peripheral

A8h IE

B0h Not present in DW8051_core, available for external SFR peripheral

B8h IP

C0h SCON1 when serial = 2, not present when serial = 0 or 1

C8h T2CON when timer2 = 1, not present when timer2 = 0

D0h PSW

D8h EICON

E0h ACC

E8h EIE when extd_intr = 1, not present when extd_intr = 0

F0h B

F8h EIP when extd_intr = 1, not present when extd_intr = 0

Table 3-13 Bit–Addressable SFRs

SFR Address Usage
3-37

DW8051 Hardware Description



The DW8051 standard interrupt unit (selected when extd_intr = 0) 
supports following interrupt sources:

• int0_n – External interrupt, active low, configurable as 
edge-sensitive or level-sensitive

• int1_n – External interrupt, active low, configurable as 
edge-sensitive or level-sensitive

• TF0 – Timer 0 interrupt

• TF1 – Timer 1 interrupt

• TF2 or EXF2 – Timer 2 interrupt

• TI_0 or RI_0 – Internal receive/transmit interrupt from Serial Port 0

The DW8051 extended interrupt unit (selected when extd_intr = 1) 
supports the 6 standard interrupts plus 7 additional interrupt sources:

• pfi – External power-fail interrupt, level-sensitive, active high

• int2 – External interrupt, edge-sensitive, active high

• int3_n – External interrupt, edge-sensitive, active low

• int4 – External interrupt, edge-sensitive, active high

• int5_n – External interrupt, edge-sensitive, active low

• wdti – External watchdog-timer interrupt, edge-sensitive, active 
high

• TI_1 or RI_1 – Internal receive/transmit interrupt from optional 
Serial Port 1
3-38

DW8051 Hardware Description



Interrupts from the serial ports and Timer 2 cannot be forced by 
software if the corresponding blocks are excluded from 
DW8051_core through parameter settings. Interrupts from excluded 
blocks will never occur. The corresponding interrupt enable and 
priority bits are available but not used.

803x/805x Compatibility

In general, when extd_intr = 1, the DW8051 interrupt structure is 
similar to that of the Dallas Semiconductor DS80C320. Table 3-14 
summarizes the differences in interrupt structure between the Intel 
8051, the Dallas Semiconductor DS80C320, and the DesignWare 
DW8051 MacroCell.

Table 3-14 Interrupt Compatibility Summary for Extended Interrupt Unit

Feature Intel 8051 Dallas DS80C320 DW8051

Power fail interrupt not implemented internally generated externally generated

External interrupt 0 implemented implemented implemented

Timer 0 interrupt implemented implemented implemented

External interrupt 1 implemented implemented implemented

Timer 1 interrupt implemented implemented implemented

Serial port 0 interrupt implemented implemented implemented when 
serial > 0

Timer 2 interrupt not implemented implemented implemented when 
timer2 = 1

Serial port 1 interrupt not implemented implemented implemented when 
serial = 2

External interrupt 2 not implemented implemented implemented

External interrupt 3 not implemented implemented implemented
3-39

DW8051 Hardware Description



Interrupt SFRs

The following SFRs are associated with interrupt control:

• IE – SFR A8h (Table 3-15)

• IP – SFR B8h (Table 3-16)

• EXIF – SFR 91h (Table 3-17)

• EICON – SFR D8h (Table 3-18)

• EIE – SFR E8h (Table 3-19)

• EIP – SFR F8h (Table 3-20)

The IE and IP SFRs provide interrupt enable and priority control for 
the standard interrupt unit, as with the standard 8051. Additionally, 
these SFRs provide control bits for the Serial Port 1 interrupt. These 
bits (ES1 and PS1) are available only when the extended interrupt 
unit is implemented (extd_intr = 1). Otherwise, they are read as 0.

Bits ES0, ES1, ET2, PS0, PS1, and PT2 are present, but not used, 
when the corresponding module is not implemented.

External interrupt 4 not implemented implemented implemented

External interrupt 5 not implemented implemented implemented

Watchdog timer interrupt not implemented internally generated externally generated

Real-time clock interrupt not implemented implemented not implemented

Table 3-14 Interrupt Compatibility Summary for Extended Interrupt Unit

Feature Intel 8051 Dallas DS80C320 DW8051
3-40

DW8051 Hardware Description



The EXIF, EICON, EIE, and EIP registers provide flags, enable 
control, and priority control for the optional extended interrupt unit.

Table 3-15 IE Register – SFR A8h

Bit Function

IE.7 EA – Global interrupt enable. Controls masking of all interrupts except power-fail 
interrupt (pfi). EA = 0 disables all interrupts (EA overrides individual interrupt enable 
bits). When EA = 1, each interrupt is enabled or masked by its individual enable bit.

IE.6 ES1 – Enable Serial Port 1 interrupt. ES1 = 0 disables Serial Port 1 interrupts (TI_1 
and RI_1). ES1 = 1 enables interrupts generated by the TI_1 or RI_1 flag. ES1 is 
available only when the extended interrupt unit is implemented (extd_intr = 1). 
Otherwise, it is read as 0. If the extended interrupt unit is implemented and Serial Port 
1 is not implemented (serial < 2), ES1 is present but not used.

IE.5 ET2 – Enable Timer 2 interrupt. ET2 = 0 disables Timer 2 interrupt (TF2). ET2 = 1 
enables interrupts generated by the TF2 or EXF2 flag. If Timer 2 is not implemented 
(timer2 = 0), ET2 is present but not used.

IE.4 ES0 – Enable Serial Port 0 interrupt. ES0 = 0 disables Serial Port 0 interrupts (TI_0 
and RI_0). ES0 = 1 enables interrupts generated by the TI_0 or RI_0 flag. If Serial 
Port 0 is not implemented (serial = 0), ES0 is present but not used.

IE.3 ET1 – Enable Timer 1 interrupt. ET1 = 0 disables Timer 1 interrupt (TF1). ET1 = 1 
enables interrupts generated by the TF1 flag.

IE.2 EX1 – Enable external interrupt 1. EX1 = 0 disables external interrupt 1 (int1_n). 
EX1 = 1 enables interrupts generated by the int1_n pin.

IE.1 ET0 – Enable Timer 0 interrupt. ET0 = 0 disables Timer 0 interrupt (TF0). ET0 = 1 
enables interrupts generated by the TF0 flag.

IE.0 EX0 – Enable external interrupt 0. EX0 = 0 disables external interrupt 0 (int0_n). 
EX0 = 1 enables interrupts generated by the int0_n pin.
3-41

DW8051 Hardware Description



Table 3-16 IP Register – SFR B8h

Bit Function

IP.7 Reserved. Read as 1.

IP.6 PS1 – Serial Port 1 interrupt priority control. PS1 = 0 sets Serial Port 1 interrupt (TI_1 
or RI_1) to low priority. PS1 = 1 sets Serial Port 1 interrupt to high priority. PS1 is 
available only when the extended interrupt unit is implemented (extd_intr = 1). 
Otherwise, it is read as 0. If the extended interrupt unit is implemented and Serial 
Port 1 is not implemented (serial < 2), PS1 is present but not used.

IP.5 PT2 – Timer 2 interrupt priority control. PT2 = 0 sets Timer 2 interrupt (TF2) to low 
priority. PT2 = 1 sets Timer 2 interrupt to high priority. If Timer 2 is not implemented 
(timer2 = 0), PT2 is present but not used.

IP.4 PS0 – Serial Port 0 interrupt priority control. PS0 = 0 sets Serial Port 0 interrupt (TI_0 
or RI_0) to low priority. PS0 = 1 sets Serial Port 0 interrupt to high priority. If Serial 
Port 0 is not implemented (serial = 0), PS0 is present but not used.

IP.3 PT1 – Timer 1 interrupt priority control. PT1 = 0 sets Timer 1 interrupt (TF1) to low 
priority. PT1 = 1 sets Timer 1 interrupt to high priority.

IP.2 PX1 – External interrupt 1 priority control. PX1 = 0 sets external interrupt 1 (int1_n) 
to low priority. PT1 = 1 sets external interrupt 1 to high priority.

IP.1 PT0 – Timer 0 interrupt priority control. PT0 = 0 sets Timer 0 interrupt (TF0) to low 
priority. PT0 = 1 sets Timer 0 interrupt to high priority.

IP.0 PX0 – External interrupt 0 priority control. PX0 = 0 sets external interrupt 0 (int0_n) 
to low priority. PT0 = 1 sets external interrupt 0 to high priority.

Table 3-17 EXIF Register – SFR 91h

Bit Function

EXIF.7 IE5 – External interrupt 5 flag. IE5 = 1 indicates that a falling edge was detected 
at the int5_n pin. IE5 must be cleared by software. Setting IE5 in software 
generates an interrupt, if enabled.
3-42

DW8051 Hardware Description



EXIF.6 IE4 – External interrupt 4 flag. IE4 = 1 indicates that a rising edge was detected 
at the int4 pin. IE4 must be cleared by software. Setting IE4 in software generates 
an interrupt, if enabled.

EXIF.5 IE3 – External interrupt 3 flag. IE3 = 1 indicates that a falling edge was detected 
at the int3_n pin. IE3 must be cleared by software. Setting IE3 in software 
generates an interrupt, if enabled.

EXIF.4 IE2 – External interrupt 2 flag. IE2 = 1 indicates that a rising edge was detected 
at the int2 pin. IE2 must be cleared by software. Setting IE2 in software generates 
an interrupt, if enabled.

EXIF.3 Reserved. Read as 1.

EXIF.2–0 Reserved. Read as 0.

Table 3-18 EICON Register – SFR D8h

Bit Function

EICON.7 SMOD1 – Serial Port 1 baud rate doubler enable. When SMOD1 = 1, the baud 
rate for Serial Port 1 is doubled.

EICON.6 Reserved. Read as 1.

EICON.5 EPFI – Enable power-fail interrupt. EPFI = 0 disables power-fail interrupt (pfi). 
EPFI = 1 enables interrupts generated by the pfi pin.

EICON.4 PFI – Power-fail interrupt flag. PFI = 1 indicates a power-fail interrupt was 
detected at the pfi pin. PFI must be cleared by software before exiting the 
interrupt service routine. Otherwise, the interrupt occurs again. Setting PFI in 
software generates a power-fail interrupt, if enabled.

EICON.3 WDTI – Watchdog timer interrupt flag. WDTI = 1 indicates a watchdog timer 
interrupt was detected at the wdti pin. WDTI must be cleared by software before 
exiting the interrupt service routine. Otherwise, the interrupt occurs again. 
Setting WDTI in software generates a watchdog timer interrupt, if enabled.

Table 3-17 EXIF Register – SFR 91h

Bit Function
3-43

DW8051 Hardware Description



EICON.2–0 Reserved. Read as 0.

Table 3-19 EIE Register – SFR E8h

Bit Function

EIE.7–5 Reserved. Read as 1.

EIE.4 EWDI – Enable watchdog timer interrupt. EWDI = 0 disables watchdog timer 
interrupt (wdti). EWDI = 1 enables interrupts generated by wdti pin.

EIE.3 EX5 – Enable external interrupt 5. EX5 = 0 disables external interrupt 5 (int5_n). 
EX5 = 1 enables interrupts generated by the int5_n pin.

EIE.2 EX4 – Enable external interrupt 4. EX4 = 0 disables external interrupt 4 (int4). 
EX4 = 1 enables interrupts generated by the int4 pin.

EIE.1 EX3 – Enable external interrupt 3. EX3 = 0 disables external interrupt 3 (int3_n). 
EX3 = 1 enables interrupts generated by the int3_n pin.

EIE.0 EX2 – Enable external interrupt 2. EX2 = 0 disables external interrupt 2 (int2). 
EX2 = 1 enables interrupts generated by the int2 pin.

Table 3-20 EIP Register – SFR F8h

Bit Function

EIP.7–5 Reserved. Read as 1.

EIP.4 PWDI – Watchdog timer interrupt priority control. WDPI = 0 sets watchdog timer 
interrupt (wdti) to low priority. PS0 = 1 sets watchdog timer interrupt to high 
priority.

Table 3-18 EICON Register – SFR D8h

Bit Function
3-44

DW8051 Hardware Description



Interrupt Processing

When an enabled interrupt occurs, the CPU vectors to the address 
of the interrupt service routine (ISR) associated with that interrupt, as 
listed in Table 3-21. The CPU executes the ISR to completion unless 
another interrupt of higher priority occurs. Each ISR ends with a RETI 
(return from interrupt) instruction. After executing the RETI, the CPU 
returns to the next instruction that would have been executed if the 
interrupt had not occurred.

An ISR can only be interrupted by a higher priority interrupt. That is, 
an ISR for a low-level interrupt can only be interrupted by high-level 
interrupt. An ISR for a high-level interrupt can only be interrupted by 
the power-fail interrupt (extended interrupt unit only).

The DW8051 always completes the instruction in progress before 
servicing an interrupt. If the instruction in progress is RETI, or a write 
access to any of the IP, IE, EIP, or EIE SFRs, the DW8051 completes 
one additional instruction before servicing the interrupt.

EIP.3 PX5 – External interrupt 5 priority control. PX5 = 0 sets external interrupt 5 
(int5_n) to low priority. PX5 = 1 sets external interrupt 5 to high priority.

EIP.2 PX4 – External interrupt 4 priority control. PX4 = 0 sets external interrupt 4 (int4) 
to low priority. PX4 = 1 sets external interrupt 4 to high priority.

EIP.1 PX3 – External interrupt 3 priority control. PX3 = 0 sets external interrupt 3 
(int3_n) to low priority. PX3 = 1 sets external interrupt 3 to high priority.

EIP.0 PX2 – External interrupt 2 priority control. PX2 = 0 sets external interrupt 2 (int2) 
to low priority. PX2 = 1 sets external interrupt 2 to high priority.

Table 3-20 EIP Register – SFR F8h

Bit Function
3-45

DW8051 Hardware Description



Interrupt Masking

The EA bit in the IE SFR (IE.7) is a global enable for all interrupts 
except the power-fail interrupt. When EA = 1, each interrupt is 
enabled/masked by its individual enable bit. When EA = 0, all 
interrupts are masked. The only exception is the power-fail interrupt, 
which is not affected by the EA bit. When EPFI = 1, the power-fail 
interrupt is enabled, regardless of the state of the EA bit.

Table 3-22 provides a summary of interrupt sources, flags, enables, 
and priorities.

Table 3-21 Interrupt Natural Vectors and Priorities

Interrupt Description Natural Priority Interrupt Vector

pfi Power fail interrupt 0 33h

int0_n External interrupt 0 1 03h

TF0 Timer 0 interrupt 2 0Bh

int1_n External interrupt 1 3 13h

TF1 Timer 1 interrupt 4 1Bh

TI_0 or RI_0 Serial Port 0 transmit or receive 5 23h

TF2 or EXF2 Timer 2 interrupt 6 2Bh

TI_1 or RI_1 Serial Port 1 transmit or receive 7 3Bh

int2 External interrupt 2 8 43h

int3_n External interrupt 3 9 4Bh

int4 External interrupt 4 10 53h

int5_n External interrupt 5 11 5Bh

wdti Watchdog timer interrupt 12 63h
3-46

DW8051 Hardware Description



Interrupt Priorities

There are two stages of interrupt priority assignment: interrupt level 
and natural priority. The interrupt level (highest, high, or low) takes 
precedence over natural priority. The power-fail interrupt, if enabled, 
always has highest priority and is the only interrupt that can have 
highest priority. All other interrupts can be assigned either high or low 
priority.

In addition to an assigned priority level (high or low), each interrupt 
has a natural priority, as listed in Table 3-21. Simultaneous interrupts 
with the same priority level (for example, both high) are resolved 
according to their natural priority. For example, if int0_n and int2 are 
both programmed as high priority, int0_n takes precedence.

Once an interrupt is being serviced, only an interrupt of higher priority 
level can interrupt the service routine of the interrupt currently being 
serviced.

Table 3-22 Interrupt Flags, Enables, and Priority Control

Interrupt Description Flag Enable Priority
Control

pfi Power fail interrupt EICON.4 EICON.5 N/A

int0_n External interrupt 0 TCON.1 IE.0 IP.0

TF0 Timer 0 interrupt TCON.5 IE.1 IP.1

int1_n External interrupt 1 TCON.3 IE.2 IP.2

TF1 Timer 1 interrupt TCON.7 IE.3 IP.3

TI_0 or RI_0 Serial Port 0 transmit or 
receive

SCON0.0 (RI_0), 
SCON0.1 (TI_0)

IE.4 IP.4

TF2 or EXF2 Timer 2 interrupt T2CON.7 (TF2),
T2CON.6 (EXF2)

IE.5 IP.5
3-47

DW8051 Hardware Description



Interrupt Sampling

The internal timers and serial ports generate interrupts by setting their 
respective SFR interrupt flag bits. The DW8051 samples external 
interrupts once per instruction cycle, at the rising edge of clk at the 
end of cycle C4.

int0_n and int1_n are both active low and can be programmed to be 
either edge-sensitive or level-sensitive, through the IT0 and IT1 bits 
in the TCON SFR. For example, when IT0 = 0, int0_n is 
level-sensitive and the DW8051 sets the IE0 flag when the int0_n pin 
is sampled low. When IT0 = 1, int0_n is edge-sensitive and the 
DW8051 sets the IE0 flag when the int0_n pin is sampled high then 
low on consecutive samples.

The remaining four external interrupts are edge-sensitive only. int2 
and int4 are active high, int3_n and int5_n are active low.

TI_1 or RI_1 Serial Port 1 transmit or 
receive

SCON1.0 (RI_1), 
SCON1.1 (TI_1)

IE.6 IP.6

int2 External interrupt 2 EXIF.4 EIE.0 EIP.0

int3_n External interrupt 3 EXIF.5 EIE.1 EIP.1

int4 External interrupt 4 EXIF.6 EIE.2 EIP.2

int5_n External interrupt 5 EXIF.7 EIE.3 EIP.3

wdti Watchdog timer interrupt EICON.3 EIE.4 EIP.4

Table 3-22 Interrupt Flags, Enables, and Priority Control

Interrupt Description Flag Enable Priority
Control
3-48

DW8051 Hardware Description



The power-fail (pfi) and watchdog timer (wdti) interrupts are active 
high and sampled once per instruction cycle. The power-fail interrupt 
is level-sensitive, and the watchdog timer interrupt is edge-sensitive.

To ensure that edge-sensitive interrupts are detected, the 
corresponding ports should be held high for 4 clk cycles and then low 
for 4 clk cycles. Level-sensitive interrupts are not latched and must 
remain active until serviced.

Interrupt Latency

Interrupt response time depends on the current state of the DW8051. 
The fastest response time is 5 instruction cycles: 1 to detect the 
interrupt, and 4 to perform the LCALL to the ISR.

The maximum latency (13 instruction cycles) occurs when the 
DW8051 is currently executing a RETI instruction followed by a MUL 
or DIV instruction. The 13 instruction cycles in this case are: 1 to 
detect the interrupt, 3 to complete the RETI, 5 to execute the DIV or 
MUL, and 4 to execute the LCALL to the ISR. For the maximum latency 
case, the response time is 13 x 4 = 52 clk cycles.

Single-Step Operation

The DW8051 interrupt structure provides a way to perform single-step 
program execution. When exiting an ISR with an RETI instruction, 
the DW8051 will always execute at least one instruction of the task 
program. Therefore, once an ISR is entered, it cannot be re-entered 
until at least one program instruction is executed.
3-49

DW8051 Hardware Description



To perform single-step execution, program one of the external 
interrupts (for example, int0_n) to be level-sensitive and write an ISR 
for that interrupt that terminates as follows:

JNB  TCON.1,$   ; wait for high on int0_n
JB   TCON.1,$   ; wait for low on int0_n
RETI            ; return for ISR

The CPU enters the ISR when int0_n goes low, then waits for a pulse 
on int0_n. Each time int0_n is pulsed, the CPU exits the ISR, executes 
one program instruction, then re-enters the ISR.

Reset

The DW8051 provides two reset inputs, por_n and rst_in_n. por_n is 
the power-on reset input. rst_in_n provides the functionality of the 
standard 8051 RST input.

For either external reset source, the DW8051 remains in the reset 
state until the external reset signal is removed. Both sources of reset 
initialize the SFRs to their reset values, as listed in Table 2-7. The 
internal RAM is not affected by either por_n or rst_in_n. When the 
activated reset signal is removed, the DW8051 exits the reset state 
and begins program execution at the standard reset vector address 
0000h.

Power On Reset

The por_n input must be driven low for at least two clk cycles to ensure 
proper initialization. There is no need to externally synchronize the 
por_n signal to clk. An internal 2-stage synchronizer synchronizes 
por_n to clk.
3-50

DW8051 Hardware Description



Asserting por_n immediately aborts the current operation, forces all 
internal logic into the reset state, and activates the rst_out_n signal. 
The rst_out_n signal is used internally to reset all modules and can 
be used to reset externally connected hardware.

The DW8051 exits the internal reset state and deasserts the 
rst_out_n signal at least 1 clk cycle after the release of por_n and 
always on the rising edge of clk. CPU operation starts 1.5 clk cycles 
after the release of rst_out_n. Figure 3-17 illustrates the power-on 
reset timing.

Standard Reset

rst_in_n provides the same functionality as the standard 8051 RST 
input, with inverse polarity.  The DW8051 always samples rst_in_n 
in cycle 4 (C4) of the 4-clk instruction cycle, and goes into the reset 
state if 2 consecutive samples of rst_in_n are low. Therefore, rst_in_n 
must be asserted (active low) for at least 2 instruction cycles (8 clk 
cycles). Shorter pulses on rst_in_n may be ignored.

The DW8051 activates rst_out_n and resets internal hardware at the 
end of the C4 cycle in which rst_in_n is sampled low for the second 
time. Figure 3-18 illustrates the rst_in_n assertion timing.

The DW8051 releases rst_out_n at the end of the second C4 cycle 
in which rst_in_n is sampled high. The CPU begins execution at 
address 0000h, 1.5 clk cycles after the release of rst_out_n. 
Figure 3-19 illustrates the rst_in_n deassertion timing.
3-51

DW8051 Hardware Description



Figure 3-17 Timing of por_n Reset

C1 C2 C3 C1 C2 C3

ZZ ZZ*

04CC 04CD 0000

clk

por_n

rst_in_n

rst_out_n

stop_mode_n

idle_mode_n

cycle(1:0)

mem_addr(15:0)

mem_data_out(7:0)

mem_data_in(7:0)

mem_wr_n

mem_rd_n

mem_psrd_n

mem_pswr_n

mem_ale

00
3-52

DW8051 Hardware Description



Figure 3-18 Assertion of rst_in_n

clk

por_n

rst_in_n

rst_out_n

stop_mode_n

idle_mode_n

cycle(1:0)

mem_addr(15:0)

mem_data_out(7:0)

mem_data_in(7:0)

mem_wr_n

mem_rd_n

mem_psrd_n

mem_pswr_n

mem_ale

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3

00

FFFD FFFE 0000F8F2

ZZ00 ZZ00 ZZ00
3-53

DW8051 Hardware Description



Figure 3-19 Deassertion of rst_in_n

Power Saving Modes

The DW8051 provides two power saving modes: idle mode and stop 
mode. Table 3-23 summarizes the differences in power saving 
features between the Intel 8051, the Dallas Semiconductor 
DS80C320, and the DesignWare DW8051 MacroCell.

clk

por_n

rst_in_n

rst_out_n

stop_mode_n

idle_mode_n

cycle(1:0)

mem_addr(15:0)

mem_data_out(7:0)

mem_data_in(7:0)

mem_wr_n

mem_rd_n

mem_psrd_n

mem_pswr_n

mem_ale

C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1

0000

00

ZZ02ZZ
3-54

DW8051 Hardware Description



The bits that control entry into idle and stop modes are in the PCON 
register at SFR address 87h (see Table 3-24).

Idle Mode

An instruction that sets the IDLE bit (PCON.0) causes the DW8051 
to enter idle mode when that instruction completes. In idle mode, CPU 
processing is suspended, internal registers maintain their current 
data, and the idle_mode_n output is activated. However, unlike the 
standard 8051, the clk is not disabled internally.

Figure 3-20 illustrates the timing relationships of DW8051_core 
signals when entering idle mode.

There are three ways to exit idle mode: activate any enabled interrupt, 
por_n, or rst_in_n. Activation of any enabled interrupt causes the 
hardware to clear the IDLE bit and terminate idle mode. The CPU 

Table 3-23  Power Saving Modes Compatibility Summary

Feature Intel 8051 Dallas DS80C320 DW8051

Idle mode Clock gated internally. 
Exit idle mode by 
interrupt or reset.

Clock gated internally. 
Exit idle mode by 
interrupt or reset.

Clock not gated 
internally. Exit idle mode 
by interrupt or reset.

Stop mode Clock gated internally. 
Exit stop mode by 
interrupt or reset.

Clock gated internally. 
Exit stop mode by 
interrupt or reset.

Clock not gated 
internally. Exit stop mode 
by power-on reset only.

Power 
management 
modes

not implemented implemented not implemented

Ring oscillator 
select

not implemented implemented not implemented

Band Gap 
select

not implemented implemented not implemented
3-55

DW8051 Hardware Description



executes the ISR associated with the received interrupt. The RETI 
instruction at the end of the of ISR returns the CPU to the instruction 
following the one that put the DW8051 into idle mode.

Figure 3-21 illustrates the timing relationships of DW8051_core 
signals when exiting idle mode due to an interrupt.

Activating either por_n or rst_in_n causes the DW8051 to exit idle 
mode, reset internal modules, and begin program execution at the 
standard reset vector address 0000h. See the reset timing diagrams 
for timing information.

Stop Mode

An instruction that sets the STOP bit (PCON.1, see Table 3-24) 
causes the DW8051 to enter stop mode when that instruction 
completes. In stop mode, CPU processing is suspended, internal 

Table 3-24 PCON Register – SFR 87h

Bit Function

PCON.7 SMOD0 – Serial Port 0 baud rate doubler enable. When SMOD0 = 1, the baud 
rate for Serial Port 0 is doubled.

PCON.6–4 Reserved.

PCON.3 GF1 – General purpose flag 1. Bit-addressable, general purpose flag for 
software control.

PCON.2 GF0 – General purpose flag 0. Bit-addressable, general purpose flag for 
software control.

PCON.1 STOP – Stop mode select. Setting the STOP bit places the DW8051 in stop 
mode.

PCON.0 IDLE – Idle mode select. Setting the IDLE bit places the DW8051 in idle mode.
3-56

DW8051 Hardware Description



registers maintain their current data, and the stop_mode_n output is 
activated. However, unlike the standard 8051, the clk is not disabled 
internally. The clk source must be removed externally.

In stop mode, the internal cycle counter is reset. Because most 
internal operations are controlled by the cycle counter, internal 
flip-flops do not change state in stop mode and, therefore, there is a 
significant reduction in power consumption.

The only way to exit stop mode is by asserting por_n. The DW8051 
executes its reset sequence and begins program execution at the 
standard reset vector address 0000h.

Figure 3-22 illustrates the DW8051 stop mode timing.
3-57

DW8051 Hardware Description



Figure 3-20 Idle Mode Entry Timing

clk

por_n

rst_in_n

rst_out_n

stop_mode_n

idle_mode_n

mem_addr(15:0)

mem_data_out(7:0)

mem_data_in(7:0)

mem_wr_n

mem_rd_n

mem_psrd_n

mem_pswr_n

mem_ale

0127* 0128

ZZ ZZ* * ZZ

03 00

int0_n

int1_n
3-58

DW8051 Hardware Description



Figure 3-21 Idle Mode Exit Timing

clk

por_n

rst_in_n

rst_out_n

stop_mode_n

idle_mode_n

mem_addr(15:0)

mem_data_out(7:0)

mem_data_in(7:0)

mem_wr_n

mem_rd_n

mem_psrd_n

mem_pswr_n

mem_ale

0128 0003

ZZZZ **

00

int0_n

int1_n

*

ZZ* **
3-59

DW8051 Hardware Description



Figure 3-22 Stop Mode Timing 

C2 C3 C4 C1 C2 C3 C4 C1C1 C2 C3 C4C1

01* 0104 01050103

0287 ZZ ZZ F0 ZZZZ

00

clk

mem_psrd_n

mem_rd_n

mem_wr_n

mem_data_in(7:0)

mem_data_out(7:0)

mem_addr(15:0)

cycle(1:0)

idle_mode_n

stop_mode_n

rst_out_n

rst_in_n

por_n

mem_pswr_n

mem_ale
3-60

DW8051 Hardware Description



4
DW8051 User Guide 4

The DW8051 MacroCell Solution includes a complete development 
environment that includes the DW8501 MacroCell, test suite, and 
example design. The DW8051 MacroCell Solution also includes 
coreConsultant for automated installation, configuration, simulation, 
and synthesis. Implementing the DW8051 in your application design 
involves the following tasks:

• Installing the DW8051 Core Kit

• Creating a Workspace

• Specifying Your Configuration

• Simulating the DW8051 MacroCell

• Synthesizing the DW8051 MacroCell

• Confirming Your Gate-Level Design

• Integrating the DW8051 into Your ASIC Design
4-1

DW8051 User Guide



• Reading Designs Back in After Layout

• Manufacturing Test

• Software Development and Debugging

Basic Design Flow

coreConsultant is your interface to the DW8051 MacroCell, as 
illustrated in Figure 4-1. You use coreConsultant to install the 
DW8051 MacroCell Solution core kit. Then, you follow the 
coreConsultant design flow to configure, simulate, and synthesize 
your custom implementation(s) of the DW8051 MacroCell.

The input to the coreConsultant design flow is the DW8051 MacroCell 
Solution core kit. The final output from the coreConsultant design flow 
is an optimized gate-level netlist for your custom DW8051 MacroCell 
configuration, in your target technology.

The coreConsultant GUI guides you through the DW8051 MacroCell 
design flow in your workspace. The DW8051 MacroCell design flow 
includes the default set of coreConsultant design activities described 
in the coreConsultant User Guide, plus additional activities that are 
specific to DW8051 simulation.
4-2

DW8051 User Guide



Figure 4-1 DW8051 MacroCell Design Flow

Transfer DW8051 core kit from
delivery medium.

Invoke coreConsultant and
read Install.kb.

coreConsultant unpacks and installs
DW8051 MacroCell Solution files into
installation directory.

Create workspace. (You can
create more than one.)

coreConsultant copies/links files from
installation directory to workspace
directory.

Execute DW8051 design
flow activities through
coreConsultant.

Integrate DW8051 into
application and perform
chip-level verification.

Perform application-specific
verification procedures with
configured version of DW8051_core.

coreConsultant
procedures

Optimized gate-level netlist for your
custom DW8051 configuration in your
target technology.
4-3

DW8051 User Guide



You execute the entire DW8051 design flow through coreConsultant, 
as shown in Figure 4-1, except for the following application-specific 
activities:

• Integrating the DW8051 MacroCell into your application design.

• Verifying the DW8051 in the context of your application design. 
The DW8051 design flow includes steps to verify your custom 
configured implementation of the DW8051 as a standalone block, 
using the DW8051 test suite. You should also verify the DW8051 
in the context of your application design, according to your design 
verification strategy.

• Creating custom test programs and operating the DW8051 test 
suite directly, if you choose to do so. coreConsultant enables you 
to select and execute any or all of the supplied test programs. If 
you want to execute custom test programs that you create, you 
must operate the test suite directly, outside of the coreConsultant 
environment, as described in Chapter 5.

This user guide describes how to perform design flow activities that 
are specific to the DW8051 MacroCell. For details about the default 
coreConsultant design flow activities, refer to the coreConsultant 
User Guide.
4-4

DW8051 User Guide



Installing the DW8051 Core Kit

The DW8051 MacroCell Solution is delivered as a core kit, which is 
a set of files in the Synopsys coreConsultant knowledge database 
(.kb) format. Installing the DW8051 MacroCell Solution core kit is a 
two-step process :

1. Transfer the DW8051 core kit from the delivery medium to your 
local disk. The delivery medium is either CD-ROM or electronic 
software transfer (EST). In either case, follow the supplied 
instructions to transfer the core kit to your local disk.

2. Invoke coreConsultant and read the file Install.kb from the 
DW8051 MacroCell Solution core kit.

Install.kb contains the knowledge that coreConsultant needs to 
properly unpack and install the DW8051 MacroCell Solution into 
your selected installation directory. 

Installation Directories and Files – VHDL Version

When coreConsultant completes the installation of the VHDL version 
of the DW8051 MacroCell Solution, your selected installation 
directory contains the directories and files described in Table 4-1 and 
Table 4-2.

Figure 4-2 shows the directory structure for the VHDL (DW8051 and 
DW8051-Source) versions of the DW8051 MacroCell Solution. In 
Figure 4-2, the selected installation directory name is dw8051. 

Table 4-1 DW8051 MacroCell Directory Structure – VHDL Version 

Directory Contents

dw8051/asm_tests Test programs
4-5

DW8051 User Guide



dw8051/cba Cell Based Array (CBA) technology library

dw8051/doc A PDF version of this databook. If you do not already have the Adobe 
Acrobat PDF reader installed, you can download it free from 
www.adobe.com.

dw8051/example An example 8032 implementation using the DW8051

dw8051/kb coreConsultant knowledge database (KB) files

dw8051/packages VHDL package files needed for DW8051_core

dw8051/quickmap Script to generate a GTECH simulation model for DW8051_core

dw8051
/sim_reference

Golden reference for output trace, strobe, and RAM contents files 
from simulation of the DS80C320 on a hardware modeler

dw8051/src VHDL source files. In the DW8051 version, the VHDL source files for 
DW8051_core and its submodules are encrypted. In the 
DW8051-Source version, the VHDL source files for DW8051_core 
and its submodules are not encrypted.

dw8051/
scan_chain_example

Example Test Compiler scan chain insertion script for DW8051_core

dw8051/testbench VHDL source files for the DW8051 testbench, plus the testbench 
command file and simulation scripts

Table 4-1 DW8051 MacroCell Directory Structure – VHDL Version 

Directory Contents
4-6

DW8051 User Guide



Figure 4-2 Directory Structure – VHDL Version

Table 4-2 Files and Directories in DW8051 – VHDL Version 

Extension(1
)

Location Description

.a51.unx ./asm_tests Assembler source code in UNIX format

.inc.unx ./asm_tests Include file for assembler programs

.adr.unx ./asm_tests Include file with address definitions for assembler 
programs

.lst ./asm_tests List file of test program

.hex ./asm_tests Intel Hex code of test program

.pct ./sim_reference Program counter trace file

.wrt ./sim_reference External RAM write trace file

.ram ./sim_reference External RAM contents, either 32 or 128 bytes

.stbs0 ./sim_reference Strobe file for rxd/txd of Serial Port 0

.stbs1 ./sim_reference Strobe file for rxd/txd of Serial Port 1

.stbc ./sim_reference Strobe file for DW8051_core output signals

dw8051

asm_tests
cba

doc
example

.hex
.lst

.a51.unx
.inc.unx
.adr.unx

cba_core.db
cba_core.sdb

.pdf

.vhd
.cmd

kb

.kb

sim_reference

.pct

.wrt
.ram

.stbs0

.stbs1
.stbc
.stbp

src testbench

.vhd
.cmd

.mem

.vhd

simulation scripts simulation scripts

packages

.vhd

scan_chain_example

.scr

quickmap

.scr
4-7

DW8051 User Guide



Installation Directories and Files – Verilog Version

When coreConsultant completes the installation of the Verilog version 
of the DW8051 MacroCell Solution, your selected installation 
directory contains the directories and files described in Table 4-3 and 
Table 4-4.

.stbp ./sim_reference Strobe file for s8032 output signals

.vhd ./src
./example

VHDL source files. The source files for DW8051_core in 
the src directory will be encrypted if you install the core kit 
without a DesignWare-8051-Source license. The source 
files in the example directory are always unencrypted.

.cmd ./testbench
./example

Command file for testbench execution, configured for 
actual simulation

.kb ./kb coreConsultant knowledge database files

.scr ./quickmap Script to generate a GTECH simulation model for 
DW8051_core, required for DW8051 (encrypted) version

.scr ./scan_chain
_example

Example Test Compiler scan chain insertion script for 
DW8051_core

.pdf ./doc PDF documentation files

.db ./cba CBA library database file

.sdb ./cba CBA library symbols database file

(1) Some of the files in ./sim_reference have the additional extension .core or .s8032 to indicate 
that the reference file could not be obtained by simulation of DS80C320 on the hardware modeler. 
These files were instead generated by simulation of DW8051_core (.core) or the example s8032 
design (.s8032).

Table 4-2 Files and Directories in DW8051 – VHDL Version (continued)

Extension(1
)

Location Description
4-8

DW8051 User Guide



Figure 4-3 shows the directory structure for the Verilog (DW8051 and 
DW8051-Source) versions of the DW8051 MacroCell Solution. In 
Figure 4-3, the selected installation directory name is dw8051.

Table 4-3 DW8051 MacroCell Directory Structure – Verilog Version 

Directory Contents

dw8051/asm_tests Test programs

dw8051/cba Cell Based Array (CBA) technology library

dw8051/doc A PDF version of this databook. If you do not already have the 
Adobe Acrobat PDF reader installed, you can download it free from 
www.adobe.com.

dw8051/example An example 8032 implementation using the DW8051

dw8051/kb coreConsultant knowledge database (KB) files

dw8051/quickmap Script to generate a GTECH simulation model for DW8051_core

dw8051/sim_reference Golden reference for output trace, strobe, and RAM contents files 
from simulation of the DS80C320 on a hardware modeler

dw8051/src Verilog source files. In the DW8051 version, the Verilog source 
files for DW8051_core and its submodules are encrypted. In the 
DW8051-Source version, the Verilog source files for 
DW8051_core and its submodules are not encrypted.

dw8051/
scan_chain_example

Example Test Compiler scan chain insertion script for 
DW8051_core

dw8051/testbench Verilog source files for the DW8051 testbench, plus the testbench 
command file and simulation scripts
4-9

DW8051 User Guide



Figure 4-3 Directory Structure – Verilog Version

Table 4-4 Files and Directories in DW8051 – Verilog Version  

Extension(1) Location Description

.a51.unx ./asm_tests Assembler source code in UNIX format

.inc.unx ./asm_tests Include file for assembler programs

.adr.unx ./asm_tests Include file with address definitions for assembler
programs

.lst ./asm_tests List file of test program

.hex ./asm_tests Intel Hex code of test program

.mem ./asm_tests Test program after conversion from Intel Hex code 
to Verilog readable format by the ihex2mem.pl 
script

.pct ./sim_reference Program counter trace file

.wrt ./sim_reference External RAM write trace file

.ram ./sim_reference External RAM contents, either 32 or 128 bytes

.stbs0 ./sim_reference Strobe file for rxd/txd of Serial Port 0

dw8051

asm_tests
cba

doc
example

.hex
.lst

.a51.unx
.inc.unx
.adr.unx

cba_core.db
cba_core.sdb

.pdf
.v

.cmd

kb

.kb
sim_reference

.pct

.wrt
.ram

.stbs0

.stbs1
.stbc
.stbp

src

.inc

testbench

.v
.cmd

.mem

.v
.inc
.pl

simulation scripts
simulation scripts

quickmap

.scr
scan_chain_example

.scr
4-10

DW8051 User Guide



.stbs1 ./sim_reference Strobe file for rxd/txd of Serial Port 1

.stbc ./sim_reference Strobe file for DW8051_core output signals

.stbp ./sim_reference Strobe file for s8032 output signals

.v ./src
./example

Verilog source files. The source files for 
DW8051_core in the src directory will be encrypted 
if you install the core kit without a 
DesignWare-8051-Source license. The source files 
in the example directory are always unencrypted.

.inc ./src
./example

Verilog include file for ‘define statements

.cmd ./testbench
./example

Command file for testbench execution, configured 
for actual simulation

.task ./testbench Command file for testbench execution after 
conversion to Verilog task by the cmd2task_c.pl 
script

.kb ./kb coreConsultant knowledge database files

.pl ./asm_tests
./testbench

Perl scripts that convert test programs and 
testbench command file into Verilog-readable 
format

.pdf ./doc PDF documentation files

.scr ./quickmap Script to generate a GTECH simulation model for 
DW8051_core, required for DW8051 (encrypted) 
version

.scr ./
scan_chain_exampl
e

Example Test Compiler scan chain insertion script 
for DW8051_core

.db ./cba CBA library database file

.sdb ./cba CBA library symbols database file

Table 4-4 Files and Directories in DW8051 – Verilog Version (continued) 

Extension(1) Location Description
4-11

DW8051 User Guide



Creating a Workspace

Follow the procedure in the coreConsultant User Guide to create a 
workspace for the DW8051. When you create your workspace, 
coreConsultant copies and/or links directories and files from the core 
kit installation directory to your selected workspace directory. 

When coreConsultant finishes creating your workspace, it displays 
an activity list that contains the default coreConsultant design flow 
activities, plus simulation activities that are specific to the DW8051 
MacroCell. To continue your work, click on the first activity in the list 
and follow the instructions to complete the activity. Refer to the 
coreConsultant User Guide and online help detailed instructions. The 
remainder of this chapter provides the information that you need to 
execute the DW8051-specific activities and integrate the DW8051 
into your application design.

Note for Table 4-4.

(1)     Some of the files in ./sim_reference have the additional 
extension .core or .s8032 to indicate that the reference file could 
not be obtained by simulation of DS80C320 on the hardware 
modeler. These files were instead generated by simulation of 
DW8051_core (.core) or the example s8032 design (.s8032).
4-12

DW8051 User Guide



Specifying Your Configuration

When you perform the coreConsultant Specify Configuration activity, 
coreConsultant displays a dialog where you select values for the 
DW8051 user-configurable parameters. The default configuration is:

• 13-source interrupt unit (extd_intr = 1)

• 256-byte internal RAM (ram_256 = 1)

• 8-KB internal ROM (rom_addr_size = 13)

• 2 serial ports (serial = 2)

• Three 16-bit timers (timer2 = 1)

Specify your configuration by setting the configuration options 
(parameter values) as described in Table 4-5. When you complete 
the Specify Configuration activity, coreConsultant writes your 
selected parameter values to the file DW8051_parameter.v(hd) in 
your workspace src directory.

Table 4-5 Configuration Options

Configurable 
Feature

Options

Interrupt Unit Type Extended – Selects extended interrupt unit with 13 sources 
(extd_intr = 1)

Standard – Selects standard interrupt unit with 6 sources (extd_intr = 0)

Size of Internal RAM 256 bytes – Implements addressability to 256 bytes of internal RAM 
(ram256 = 1)

128 bytes – Implements addressability to 128 bytes of internal RAM 
(ram256 = 0)
4-13

DW8051 User Guide



Simulating the DW8051 MacroCell

The DW8051 MacroCell Solution includes a comprehensive test suite 
that tests all DW8051 opcodes, internal peripherals, and special 
functions. The test suite includes:

• A testbench that instantiates DW8051_core, plus models and/or 
processes that emulate internal and external ROM and RAM, 
serial port devices, an external SFR device, and a test pattern 
generator to test the interrupt ports

• A set of test programs

Internal ROM 
Address Bus Width

Determines how many of the 16 internal ROM address bits (irom_addr) 
are used. Legal values are 0–16 (0 = no internal ROM present). Unused 
irom_addr pins are tied to logic 0.

Associated HDL parameter is rom_addr_size.

None – No serial port present (serial = 0)

Number of Serial 
Ports

One – Serial Port 0 present (serial = 1)

Two – Serial Ports 0 and 1 present (serial = 2). If you choose to 
implement both serial ports, then you must select the extended 
interrupt unit (extd_intr = 1) to handle interrupt requests from Serial 
Port 1. If you select the standard interrupt unit (extd_intr = 0), you can 
still operate Serial Port 1 in polling mode.

Timer 2 Included – Timer 2 present (timer2 = 1)

Removed – Timer 2 not present (timer2 = 0)

Table 4-5 Configuration Options

Configurable 
Feature

Options
4-14

DW8051 User Guide



• A testbench command file that specifies which test programs the 
testbench will execute

• A set of simulation reference (“golden”) files

In addition, there are special programs available as examples of how 
to test internal RAM and ROM.

coreConsultant automatically configures the testbench, invokes your 
simulator to run the simulation, and compares the simulation results 
against the supplied reference files.

DW8051 Testbench Architecture

Figure 4-4 shows a block diagram of the DW8051 testbench 
(DW8051_core_tb). The testbench instantiates DW8051_core as the 
device under test, plus several models to support testing of internal 
peripherals and functions:

• Processes that emulate 64 KB of external ROM and 64 KB of 
external RAM connected to the external memory bus (mem_bus)

• 256-byte internal RAM model connected to the internal RAM bus 
(iram_bus)

• Processes that emulate up to 64 KB of internal ROM connected 
to the internal ROM bus (irom_bus)

• Multiple instances of a test pattern generator that is used for the 
interrupt tests

• Two instances of a serial port device model to support the serial 
port tests

• An external SFR bus device model to support testing the external 
SFR bus
4-15

DW8051 User Guide



• A special external SFR device model to support the test program 
sfr_iram_test, which verifies that external SFR bus devices are 
not affected by internal RAM accesses

Figure 4-4 DW8051 Testbench Architecture

Command
File

DW8051_core
Device Under
Test (DUT)

64 KB

External RAM

64 KB

External ROM

Test Pattern
Generators

Interrupt Ports

mem_bus

External SFR
Device Model

Serial Port
Device
Models

sfr_bus

Serial Ports

DW8051_core_tb

Test
Programs

.hex – VHDL
.mem – Verilog

Simulation
Results

.pct, .wrt, .ram, .stbs0,
.stbs1, .stbc, .stbp

DW8051_core_tb.cmd

External SFR
Device Model

Special

irom_bus64 KB
Internal ROM

256 Byte
Internal RAM

iram_bus
4-16

DW8051 User Guide



Simulation Methods

There are two interfaces to the DW8051 MacroCell test suite:

• Configure and operate the test suite through coreConsultant.

The DW8051 coreConsultant design flow includes 
DW8051-specific simulation activities that enable you to configure 
and operate the test suite through the coreConsultant GUI. The 
coreConsultant simulation activities enable you to execute any or 
all of the supplied test programs on your custom configuration of 
the DW8051 and check the results.

• Configure and operate the test suite directly from the UNIX 
command line using the supplied test suite configuration utilities 
and simulation scripts. You need to configure and operate the test 
suite directly if you want to create and execute any custom test 
programs.

The following sections describe how to configure and operate the test 
suite through coreConsultant, by executing the coreConsultant 
DW8051 simulation-specific activities. This is the recommended 
method for verifying your custom DW8051 configuration.

For a comprehensive description of the DW8051 test suite and 
procedures to configure and operate the test suite directly, refer to 
Chapter 5.
4-17

DW8051 User Guide



Verification Activities

Simulation procedures differ slightly for the DW8051-Source and 
DW8051 (encrypted) versions of the DW8051 MacroCell Solution, as 
illustrated in Figure 4-5:

• For the DW8051 (encrypted) version, you must generate a 
GTECH simulation model for your custom DW8051 configuration. 
coreConsultant automatically uses the GTECH simulation model 
for DW8051_core when you run the simulation.

• For the DW8051-Source version, you do not need to generate a 
GTECH simulation model because you can simulate the RTL 
directly. Therefore, you can skip the Generate GTECH Simulation 
Model activity.

The coreConsultant simulation activities for the DW8051 MacroCell 
are:

1. Generate GTECH Simulation Model

2. Simulation Setup

3. Test Suite Configuration

4. Run Simulation

5. View Simulation Log
4-18

DW8051 User Guide



Figure 4-5 Simulation Procedures

Generating a GTECH Simulation Model

For the DW8051 (encrypted) version of the DW8051 MacroCell 
Solution, you must create a GTECH simulation model of your custom 
DW8051 configuration because the simulator cannot read the 
encrypted source files. The only exception is if you are using 
Synopsys VSS or Scirocco for VHDL simulation. VSS and Scirocco 
can read the encrypted source files.

Specify Configuration

coreConsultant
Synthesis Activities

DW8051-Source

Simulation Setup

Test Suite Configuration

Run Simulation

View Simulation Log

Specify Configuration

coreConsultant
Synthesis Activities

DW8051 (encrypted)

Simulation Setup

Test Suite Configuration

Run Simulation

View Simulation Log

Generate GTECH
Simulation model

DW8051-specific
simulation activities

DW8051-specific
simulation activities
4-19

DW8051 User Guide



Note:   
If you are not using VSS  or Scirocco and therefore need to create 
a GTECH simulation model, you will need a 
DesignWare-Foundation license to complete the simulation 
model generation process.

To create a GTECH simulation model, execute the DW8051-specific 
coreConsultant Generate GTECH Simulation Model activity. 
coreConsultant displays a dialog where you specify values for the 
parameters listed in Table 4-6. 

Specify your parameters, then click OK. coreConsultant invokes 
Design Compiler to perform a low-effort compile (quick map) of your 
custom DW8051_core configuration using the Synopsys 
technology-independent GTECH library. The output file that contains 
your simulation model is <workspace>/quickmap/
DW8051_core_sim.v(hd).

Simulation Setup

The Simulation Setup activity creates a new directory named 
sim_res_core in your workspace to contain the output files from 
simulation of the test programs.

Table 4-6 Generate GTECH Simulation Model Parameters

Parameter Description

Run remotely Selects whether to run the quick map on the specified host machine instead 
of the local workstation. For example, you may want to run the quick map 
on a high-capacity network server for faster execution.

Send Email Selects whether to send email to the specified user when the quick map 
synthesis is complete. When you receive the email notification, the GTECH 
simulation model is ready and you can perform the remaining simulation 
activities.
4-20

DW8051 User Guide



After creating the sim_res_core directory, the Simulation Setup 
activity runs one of the DW8051 test programs on your selected VHDL 
or Verilog simulator and checks the result to ensure that your 
simulation environment is properly configured.

To perform the Simulation Setup activity:

1. Make sure that one of the following simulators is properly installed 
on your system and all its required environment variables are set:

- VHDL
Synopsys VSS, Synopsys Scirocco, Cadence Leapfrog, or MTI 
ModelSim

- Verilog
Synopsys VCS, Cadence Verilog-XL, Cadence NC-Verilog, or 
MTI ModelSim

2. Click Simulation Setup in the coreConsultant activity list.

3. Select your VHDL or Verilog simulator and click OK.

When the test program completes successfully (no simulation errors 
encountered and the test result files in sim_res_core match the 
corresponding reference files in sim_reference), coreConsultant 
enables the Test Suite Configuration activity.

If the test program fails to complete successfully, coreConsultant 
posts an error message indicating the cause of the problem so that 
you can correct the problem and repeat Simulation Setup.

Test Suite Configuration

The Test Suite Configuration activity configures the testbench 
command file to execute selected test programs for your custom 
DW8051 configuration. By default, most of the test programs 
4-21

DW8051 User Guide



applicable to your custom DW8051 configuration are enabled in the 
Test Suite Configuration spreadsheet. Some of the more 
time-consuming tests are disabled by default so that you can quickly 
simulate the majority of the test programs, then selectively simulate 
the few tests that require the most simulation time.

In the Test Suite Configuration spreadsheet, enable or disable 
individual tests by setting the value in the Test Enabled column to 1 
(enabled) or 0 (disabled). To determine the function of the various 
tests listed in the Test Suite Configuration dialog, use the 
coreConsultant "What’s This" help feature. For more information 
about the testbench command file and test programs, refer to the test 
suite description in Chapter 5.

When you click OK, coreConsultant writes (or overwrites) the 
configured testbench command file to DW8051_core_tb.cmd in your 
workspace testbench directory. The DW8051 testbench is now 
configured to automatically execute the selected tests on your 
configured version of DW8051_core.

Run Simulation

The Run Simulation activity generates a script to invoke your selected 
VHDL or Verilog simulator to simulate the testbench. You can also 
select to invoke the script to execute the simulation directly from the 
coreConsultant Run Simulation dialog. The simulation runs all the 
test programs that you selected in the Test Suite Configuration 
activity.

There are user-selectable parameters to the Run Simulation activity, 
as listed in Table 4-7. Select and/or enter values for the Run 
Simulation parameters in the Run Simulation dialog, then click OK to 
complete the Run Simulation activity.
4-22

DW8051 User Guide



coreConsultant writes the simulation run script to your workspace 
testbench directory. If you selected to run the script, coreConsultant 
executes the simulation run script.

To execute or re-execute the simulation script at a later time, go to 
the testbench directory in your workspace and execute the simulation 
run script. For example, if you accepted the default name for the 
simulation run script, use the following commands:

% cd <workspace>/testbench
% ./SimScript.csh

Table 4-7 Run Simulation Parameters

Run Simulation Parameter Description

Simulation Script File The name of the generated simulation run script. The default 
is SimScript.csh.

Simulation Log File The name of the simulation log file. The default is 
Simulation.log.

Generate Scripts Only Selects whether to execute the simulation or just generate the 
simulation run script. If checked (the default), coreConsultant 
generates, but does not execute, the simulation run script. You 
can execute the script at a later time by invoking the run script 
(SimScript.csh) directly from the UNIX command line.

Send Email Selects whether to send email to the specified user when the 
simulation is complete.

Run remotely Selects whether to run the simulation on the specified host 
machine instead of the local workstation. For example, you 
may want to run the simulation on a high-capacity network 
server for faster execution.
4-23

DW8051 User Guide



The simulation run script performs the following functions:

• Runs the simulation on your selected simulator and directs the 
output to the simulation log file in your workspace testbench 
directory. The default simulation log file name is Simulation.log.

• Compares the simulation results for each test in sim_res_core to 
the corresponding reference file in sim_reference and appends 
the results of the comparison to the simulation log file.

You can then use the View Simulation Log activity to check the results 
of the comparisons.

View Simulation Log

The View Simulation Log activity displays the simulation log file in 
your selected web browser. The name of the log file is <workspace>/
testbench/Simulation.log unless you selected a different name. At the 
end of the log file, there is a test summary indicating the number of 
passes and failures. There should not be any test failures.

If any of the supplied test programs fail, contact your Synopsys 
representative. 

If any of your custom test programs fail, re-analyze the test program 
execution using a waveform viewer. For more information about 
creating and executing custom test programs, refer to “Creating and 
Executing Custom Tests” on page 5-17.

Application Specific Simulation

In addition to verifying your custom DW8051 configuration as a 
standalone block using the supplied test suite, you should also verify 
the DW8051 in the context of your application design according to 
4-24

DW8051 User Guide



your verification strategy. To do so, integrate the DW8051 into your 
application design as described in Integrating the DW8051 into Your 
ASIC Design in this chapter and simulate the design according to 
your verification strategy. 

If you are using DW8051-Source, you can simulate the RTL version 
of your custom DW8051 configuration. If you are using DW8051 
(encrypted), you must simulate the GTECH simulation model for your 
custom DW8051 configuration.

Simulating Internal RAM

DW8051_core includes an interface for internal RAM, but not the 
RAM itself. When you integrate the DW8051 into your application for 
application-specific testing, you must also implement a model for 
internal RAM and connect the model to the internal RAM interface, 
as described in Interfacing to Internal RAM in this chapter.

The DW8051 testbench (DW8051_core_tb) includes a simulation 
model for a 256-byte internal RAM (DW8051_ram_256) that is 
connected to the internal RAM interface. You can use the testbench 
simulation model for internal RAM as an example of how to implement 
external RAM for application-specific testing.

Simulating Internal ROM

DW8051_core includes an interface for internal ROM, but not the 
ROM itself. When you integrate the DW8051 into your application for 
application-specific testing, you must also implement a model for 
internal ROM and connect the model to the internal ROM interface, 
as described in Interfacing to Internal ROM in this chapter.
4-25

DW8051 User Guide



The DW8051 testbench (DW8051_core_tb) includes processes that 
emulate internal and external ROM. You can use these processes 
as examples of how to model internal ROM for application-specific 
testing.

For VHDL, there are separate process for internal and external ROM. 
The testbench automatically invokes the correct process to perform 
transactions on either the internal ROM bus or the external memory 
bus, depending on the value of rom_addr_size.

For Verilog, a single process monitors the internal ROM interface to 
determine when the internal ROM is being accessed. When the 
testbench detects an internal ROM access, it places the 
corresponding data on the internal ROM data bus. When the 
testbench detects an external ROM access, it places the 
corresponding data on the external memory data bus.

Synthesizing the DW8051 MacroCell

To synthesize your custom DW8051 configuration, perform the 
coreConsultant set of synthesis activities: context/intent specification, 
strategy selection, synthesis, and results analysis.

The default set of synthesis attributes on DW8051_core should 
provide acceptable synthesis results in most libraries, using the 
coreConsultant DC_opto_strategy. The only synthesis attribute 
values you need to specify are the clock and design context attributes.
4-26

DW8051 User Guide



When performing the synthesis activities with DW8051, be aware of 
the following default synthesis intent specifications. You can override 
these and any other synthesis intent specifications:

• The default OptimizationPriorities for DW8051_core is 
timing_area. If your design goals differ, you need to change the 
value of OptimizationPriorities.

• The input/output constraint attributes are applied only to the 
top-level ports of DW8051_core. There are no constraint 
attributes explicitly set on subblocks. The synthesis strategy is a 
top-down compile of DW8051_core. If you want to alter the 
strategy to compile subblocks individually, you need to specify 
port intent on the subblocks. One way extract budgets for 
subblocks is to use the coreConsultant 
DC_design_budgeting_strategy, as described in the 
coreConsultant User Guide.

• Min and Max values for the delay constraints on the top-level ports 
are set to equal values.

• PreserveBoundaries is false on DW8051_core, which means that 
the DW8051_core and its subblocks are subject to Design 
Compiler boundary optimization.

• TestReadyCompile is true, which means that Design Compiler 
will insert scan flip-flops on the first compile (compile -scan).

Confirming Your Gate-Level Design

One of the coreConsultant synthesis strategy selection parameters 
that you select is the output format for the gate-level netlist of 
DW8051_core. The default format is either VHDL or Verilog, 
depending on which version of the DW8051 MacroCell you are using. 
4-27

DW8051 User Guide



If you select VHDL or Verilog, you can confirm the synthesized design 
by simulating the gate-level netlists with the same testbench used to 
verify the RTL design functionality.

coreConsultant stores the gate-level netlist output from Design 
Compiler in the directories <workspace>/syn/<phase>, where 
<phase> is the name of a compile phase (for example, incr1). The 
number of synthesis phases executed depends on the value that you 
select for the synthesis strategy selection QoR Effort parameter.

Confirm the synthesized design by simulating the gate-level netlist 
with the same testbench used to verify the RTL design functionality.

Integrating the DW8051 into Your ASIC Design

After you are satisfied with the area, timing, and functionality of the 
synthesized design, integrate your DW8051 implementation into your 
design. To do so, instantiate DW8051_core and connect its ports as 
needed for the design implementation. The following sections 
describe how to:

• Instantiate DW8051_core

• Interface to internal memory devices

• Interface to external memory devices

• Interface to devices on the external SFR bus

Instantiating DW8051_core (VHDL)

Example 4-1 shows how to instantiate DW8051_core in VHDL.
4-28

DW8051 User Guide



Example 4-1 Instantiating DW8051_core in VHDL
library IEEE,DW8051;
use IEEE.std_logic_1164.all;
use DW8051.std_logic_misc.all;
use DW8051.std_logic_arith.all;
use DW8051.std_logic_unsigned.all;
use DW8051.DW8051_components.all;
use DW8051.DW8051_packages.all;

entity my_8051 is
end my_8051;

architecture str of my_8051 is

signal clk, por_n, rst_in_n, rst_out_n : std_logic;
signal test_mode_n                     : std_logic;
signal stop_mode_n, idle_mode_n        : std_logic;
signal sfr_addr                        : std_logic_vector (7 downto 0);
signal sfr_data_out, sfr_data_in       : std_logic_vector (7 downto 0);
signal sfr_wr, sfr_rd                  : std_logic;
signal mem_addr                        : std_logic_vector (15 downto 0);
signal mem_data_out, mem_data_in       : std_logic_vector (7 downto 0);
signal mem_wr_n, mem_rd_n              : std_logic;
signal mem_pswr_n, mem_psrd_n          : std_logic;
signal mem_ale, mem_ea_n               : std_logic;
signal int0_n, int1_n, int2, int3_n    : std_logic;
signal int4, int5_n, pfi, wdti         : std_logic;
signal rxd0_in, rxd0_out, txd0         : std_logic;
signal rxd1_in, rxd1_out, txd1         : std_logic;
signal t0, t1, t2, t2ex                : std_logic;
signal t0_out, t1_out, t2_out          : std_logic;
signal port_pin_reg_n                  : std_logic;
signal p0_mem_reg_n, p0_addr_data_n    : std_logic;
signal p2_mem_reg_n                    : std_logic;
signal iram_addr                       : std_logic_vector (7 downto 0);
signal iram_data_out                   : std_logic_vector (7 downto 0);
signal iram_data_in                    : std_logic_vector (7 downto 0);
signal iram_rd_n                       : std_logic;
signal iram_we1_n                      : std_logic;
signal iram_we2_n                      : std_logic;
signal irom_addr                      : std_logic_vector (15 downto 0)

signal irom_data_out                   : std_logic_vector (7 downto 0);
signal irom_rd_n                       : std_logic;
signal irom_cs_n                       : std_logic;

begin
  -- component instantiation:
  U0: DW8051_core
4-29

DW8051 User Guide



      port map (clk             => clk,
                por_n           => por_n,
                rst_in_n        => rst_in_n,
                rst_out_n       => rst_out_n,
                test_mode_n     => test_mode_n,
                stop_mode_n     => stop_mode_n,
                idle_mode_n     => idle_mode_n,
                sfr_addr        => sfr_addr,
                sfr_data_out    => sfr_data_out,
                sfr_data_in     => sfr_data_in,
                sfr_wr          => sfr_wr,
                sfr_rd          => sfr_rd,
                mem_addr        => mem_addr,
                mem_data_out    => mem_data_out,
                mem_data_in     => mem_data_in,
                mem_wr_n        => mem_wr_n,
                mem_rd_n        => mem_rd_n,
                mem_pswr_n      => mem_pswr_n,
                mem_psrd_n      => mem_psrd_n,
                mem_ale         => mem_ale,
                mem_ea_n        => mem_ea_n,
                int0_n          => int0_n,
                int1_n          => int1_n,
                int2            => int2,
                int3_n          => int3_n,
                int4            => int4,
                int5_n          => int5_n,
                pfi             => pfi,
                wdti            => wdti,
                rxd0_in         => rxd0_in,
                rxd0_out        => rxd0_out,
                txd0            => txd0,
                rxd1_in         => rxd1_in,
                rxd1_out        => rxd1_out,
                txd1            => txd1,
                t0              => t0,
                t1              => t1,
                t2              => t2,
                t2ex            => t2ex,
                t0_out          => t0_out,
                t1_out          => t1_out,
                t2_out       => t2_out,
                port_pin_reg_n  => port_pin_reg_n,
                p0_mem_reg_n    => p0_mem_reg_n,
                p0_addr_data_n  => p0_addr_data_n,
                p2_mem_reg_n    => p2_mem_reg_n,
4-30

DW8051 User Guide



                iram_addr        => iram_addr,
                iram_data_out    => iram_data_out,
                iram_data_in     => iram_data_in,
                iram_rd_n        => iram_rd_n,
                iram_we1_n       => iram_we1_n,
                iram_we2_n       => iram_we2_n,
 
                irom_addr        => irom_addr,
                irom_data_out    => irom_data_out,
                irom_rd_n        => irom_rd_n,
                irom_cs_n        => irom_cs_n
               );
end str;
-------------------------------------------------------------
-- pragma translate_off
configuration my_8051_cfg of my_8051 is
  for str
    for U0:
      DW8051_core use configuration DW8051.DW8051_core_cfg_rtl;
    end for;
  end for;
end my_8051_cfg;
-- pragma translate on

Instantiating DW8051_core (Verilog)

Example 4-2 shows how to instantiate DW8051_core in Verilog.

Example 4-2 Instantiating DW8051_core in Verilog
module my_8051;
  reg  clk;
  reg  por_n;
  reg  rst_in_n;
  wire rst_out_n;
  reg  test_mode_n;
  wire stop_mode_n;
  wire idle_mode_n;
  wire [7:0] sfr_addr;
  wire [7:0] sfr_data_out;
  wire [7:0] sfr_data_in;
  wire sfr_wr;
  wire sfr_rd
4-31

DW8051 User Guide



  wire [15:0] mem_addr;
  wire [7:0] mem_data_out;
  reg  [7:0] mem_data_in;
  wire mem_wr_r;
  wire mem_rd_n;
  wire mem_pswr_n;
  wire mem_psrd_n;
  wire mem_ale;
  reg  mem_ea_n;
  wire int0_n;
  wire int1_n;
  wire int2;
  wire int3_n;
  wire int4;
  wire int5_n;
  wire pfi;
  wire wdti;
  wire rxd0_in;
  wire rxd0_out, txd0;
  wire rxd1_in;
  wire rxd1_out, txd1;
  wire t0;
  wire t1;
  wire t2;
  wire t2ex;
  wire t0_out, t1_out, t2_out;
  wire port_pin_reg_n, p0_mem_reg_n, p0_addr_data_n, p2_mem_reg_n;
  wire [7:0] iram_addr, iram_data_out, iram_data_in;
  wire iram_rd_n, iram_we1_n, iram_we2_n;
  wire [15:0] irom_addr;
  reg [7:0] irom_data_out;
  wire irom_rd_n, irom_cs_n;
  //---------------------------------------------------------------
  // DW8051 instantiation:
  //---------------------------------------------------------------
  DW8051_core U0 (
          .clk                  (clk),
          .por_n                (por_n),
          .rst_in_n             (rst_in_n),
          .rst_out_n            (rst_out_n),
          .test_mode_n          (test_mode_n),
 
          .stop_mode_n          (stop_mode_n),
          .idle_mode_n          (idle_mode_n),
 
          .sfr_addr             (sfr_addr),
          .sfr_data_out         (sfr_data_out),
          .sfr_data_in          (sfr_data_in),
          .sfr_wr               (sfr_wr),
          .sfr_rd               (sfr_rd),
 

4-32

DW8051 User Guide



  
          .mem_addr             (mem_addr),
          .mem_data_out         (mem_data_out),
          .mem_data_in          (mem_data_in),
          .mem_wr_n             (mem_wr_n),
          .mem_rd_n             (mem_rd_n),
          .mem_pswr_n           (mem_pswr_n),
          .mem_psrd_n           (mem_psrd_n),
          .mem_ale              (mem_ale),
          .mem_ea_n             (mem_ea_n),
 
          .int0_n               (int0_n),
          .int1_n               (int1_n),
          .int2                 (int2),
          .int3_n               (int3_n),
          .int4                 (int4),
          .int5_n               (int5_n),
 
          .pfi                  (pfi),
          .wdti                 (wdti),
 
          .rxd0_in              (rxd0_in),
          .rxd0_out             (rxd0_out),
          .txd0                 (txd0),
          .rxd1_in              (rxd1_in),
          .rxd1_out             (rxd1_out),
          .txd1                 (txd1),
 
          .t0                   (t0),
          .t1                   (t1),
          .t2                   (t2),
          .t2ex                 (t2ex),
 
          .t0_out               (t0_out),
          .t1_out               (t1_out),
          .t2_out               (t2_out),
 
          .port_pin_reg_n       (port_pin_reg_n),
          .p0_mem_reg_n         (p0_mem_reg_n),
 
          .p0_addr_data_n       (p0_addr_data_n),
          .p2_mem_reg_n         (p2_mem_reg_n),
 
 
          .iram_addr            (iram_addr),
          .iram_data_out        (iram_data_out),
          .iram_data_in         (iram_data_in),
          .iram_rd_n            (iram_rd_n),
          .iram_we1_n           (iram_we1_n),
          .iram_we2_n           (iram_we2_n),
 
          .irom_addr            (irom_addr),
          .irom_data_out        (irom_data_out),
4-33

DW8051 User Guide



          .irom_rd_n            (irom_rd_n),
          .irom_cs_n            (irom_cs_n)
          );
endmodule //my_8051

Interfacing to Internal RAM

The DW8051 MacroCell provides an interface for either 128 or 256 
bytes of internal RAM, as determined by the ram_256 parameter. 
ram_256 = 0 selects 128 bytes; ram_256 = 1 selects 256 bytes. The 
default is 256 bytes (ram_256 = 1).

The internal RAM address bus (iram_addr) is always 8 bits wide. The 
ram_256 parameter determines whether or not DW8051_core will 
address the upper 128 bytes.

Internal RAM Read Interface

The internal RAM read interface signals are iram_addr, 
iram_data_out, and iram_rd_n. All internal RAM read accesses occur 
within one clk cycle.

For all instructions, the DW8051 performs an internal RAM read to 
register R0 or R1 in C2 of the first instruction cycle. The DW8051 
performs an additional internal RAM read during C3 for instructions 
that involve either of the following types of internal RAM accesses:

• Indirect internal RAM read access (for example, MOV A, @Ri 
where i = 0 or 1)

• Direct internal RAM read access to registers R0–R7 (for example, 
INC Rn, where n = 0–7)
4-34

DW8051 User Guide



Figure 4-6 shows the internal RAM read timing for an instruction that 
requires an indirect internal RAM read. iram_rd_n remains asserted 
for two clock cycles to perform the two internal RAM read accesses 
during C2 and C3.

Figure 4-6 Internal RAM Read Signals and Timing

Internal RAM Write Interface

The internal RAM write interface signals are iram_addr, iram_data_in, 
iram_we1_n and iram_we2_n. All internal RAM write accesses occur 
within two clk cycles, as illustrated in Figure 4-7. iram_we1_n goes 
active in C4 to indicate that there is a valid internal RAM address on 
iram_addr. iram_we2_n goes active in C1 to indicate that there is 
valid data on iram_data_in. 

Figure 4-8 and Figure 4-10 show the recommended internal RAM 
implementations for asynchronous and synchronous RAMs.

c2c1 c3 c4

R0 or R1

data_out1iram_data_out

iram_rd_n

iram_addr

clk

cycle

rd_addr

data_out2

Internal RAM read occurs
in C2 for all instructions.

Internal RAM read occurs
in C3 for all instructions
that require indirect RAM
read access and all instructions
that require direct RAM read
access to internal RAM
registers R0–R7.
4-35

DW8051 User Guide



Figure 4-7 Internal RAM Write Signals and Timing

Implementing Internal RAM

To implement internal RAM, connect a technology-specific, gate-level 
RAM netlist, supplied by your ASIC vendor, to the internal RAM bus. 
In addition, you may need to implement glue logic so that your 
technology-specific RAM module can meet the signal and timing 
requirements of the DW8051 internal RAM interface.

Interfacing to Asynchronous RAM

Figure 4-8 illustrates an example asynchronous internal RAM 
implementation using the DW8051 internal RAM interface. The 
implementation in Figure 4-8 uses glue logic to cause the RAM write 
enable input to go active on the falling edge of clk in the middle of 
C1, when iram_we1_n and iram_we2_n are both active. Figure 4-9 
illustrates the asynchronous RAM interface timing.

c4c3 c1 c2

wr_addrrd_addr

data_in

write

iram_we2_n

iram_we1_n

iram_data_in

iram_addr

clk

cycle

tas tah

tds

tas = Address setup time (approx. one clk cycle)
tah = Address hold time (approx. one clk cycle)
tds = Write data setup time (approx. one clk cycle)

(recommended)
4-36

DW8051 User Guide



Figure 4-8 Example Asynchronous Internal RAM Implementation

Figure 4-9 Asynchronous RAM Interface Timing

Technology Dependent

addr

di

do

we_n

6

8

iram_we1_n
iram_we2_n

clk

rst_out_n

iram_addr

iram_data_in

iram_data_out

8

d Q r/w

Asynchronous RAM

DW8051_core

wr_addrrd_addr

write

clk

read data must be valid

data_in

read_data

iram_addr

iram_we1_n

iram_we2_n

we_n

iram_data_out

iram_data_in

c4c3 c1 c2cycle
4-37

DW8051 User Guide



Read Cycle Timing Parameters

The read access time for the configuration in Figure 4-8 is 
approximately one clk cycle minus some delays. The formula for read 
access time is:

Tacc_required = Tcy – Taddr – Tff_setup

where:

Tacc_required = Read access time required for asynchronous RAM
Tcy = Clock period
Taddr = Clock to output delay for iram_addr flip-flops
Tff_setup = Setup time of flip-flop in DW8051_cpu

For a clock frequency of 25 MHz (clock period 40 ns), this leads to 
an access time of approximately 25–30 ns for most target 
technologies.

Write Cycle Timing Parameters

For write access of the example asynchronous RAM implementation 
shown in Figure 4-8, there are 4 timing parameters of interest:

Tawb_setup = Setup time for iram_addr to falling edge of we_n 
Tdiwb_setup = Setup time for iram_data_in to rising edge of we_n 
Tdiwb_hold = Hold time for iram_data_in from rising edge of we_n
Twb_width = Width of we_n pulse

The values of these parameters are:

Tawb_setup = approximately 1/2 clock cycle
Tdiwb_setup = approximately 1/2 clock cycle 
Tdiwb_hold = approximately 1/2 clock cycle 
Twb_width = approximately 1 clock cycle
4-38

DW8051 User Guide



For a clock frequency of 25 MHz (clock period 40 ns), all write 
parameters are approximately 20 or 40 ns, which are values that meet 
the requirements of most target technologies.

Interfacing to Synchronous RAM

Figure 4-10 illustrates an example synchronous internal RAM 
implementation using the DW8051 internal RAM interface. 
Figure 4-11 illustrates the synchronous RAM interface timing.

Read Cycle Timing Parameters

For synchronous RAM read access, there are four parameters of 
interest:

Traddr_setup = Setup time of iram_addr to rising edge of clk
Traddr_hold = Hold time of iram_addr to rising edge of clk
Trdata_setup = Setup time rd_data to rising edge of clk
Trdata_hold = Hold time rd_data to rising edge of clk

For the configuration shown in Figure 4-10, all read parameters are 
approximately 1/2 clock cycle. For a clock frequency of 25 MHz (clock 
period 40 ns), these parameters are approximately 20 ns, which is 
acceptable for most semiconductor RAMs.
4-39

DW8051 User Guide



Figure 4-10 Example Synchronous Internal RAM Implementation

Figure 4-11 Synchronous RAM Interface Timing

Technology Dependent

cs

addr

di

do

6

8

clk

iram_addr

iram_data_in

iram_data_out

8

we

iram_rd_n

Synchronous RAM

clk
clk_n

iram_we2_n

DW8051_core

wr_addrrd_addr

rd_data1

data_iniram_data_in

iram_data_out

iram_we2_n

iram_rd_n

iram_addr

clk

writeread data must be valid

c4c3 c1 c2cycle

rd_addr (R0 or R1)

rd_data2
4-40

DW8051 User Guide



The overall read access time for the configuration in Figure 4-10 is 
approximately 1/2 clock cycle (iram_addr latched on falling edge of 
clk) minus some delays. The formula for read access time is:

Tacc_required = 0.5*Tcy – Tff_setup

where:

Tacc_required = Read access time required for synchronous RAM
Tcy = Clock period
Tff_setup = Setup time of flip-flop in DW8051_cpu

For a clock frequency of 25 MHz (clock period 40 ns), this leads to 
an access time of approximately 10–15 ns for most target 
technologies. This is a value that must be regarded as critical. The 
timing for this path must be evaluated in detail for a given target 
frequency.

Write Cycle Timing Parameters

For the write access, there are four parameters of interest:

Twaddr_setup = Setup time for iram_addr from rising edge of clk
Twaddr_hold = Hold time for iram_addr to rising edge of clk
Twdata_setup = Setup time of iram_data_in from rising edge of clk
Twdata_hold = Hold time for iram_data_in to rising edge of clk

For the configuration shown in Figure 4-10, the parameters values 
are:

Twaddr_setup = approximately 1/2 clock cycle
Twaddr_hold = approximately 1/2 clock cycle 
Twdata_setup = approximately 1.5 clock cycle 
Twdata_hold = approximately 1/2 clock cycle
4-41

DW8051 User Guide



For a clock frequency of 25 MHz (clock period 40 ns), all write 
parameters are approximately 20 or 60 ns, which are values that meet 
the requirements of most target technologies.

Interfacing to Internal ROM

The DW8051 MacroCell provides an interface for up to 64 KB of 
internal ROM, as determined by the rom_addr_size parameter. The 
default value is rom_addr_size = 13 (8-KB internal ROM).

The irom_addr bus is always 16 bits wide. The rom_addr_size 
parameter determines how many of the 16 irom_addr bits are used; 
unused irom_addr bits are tied to logic 0.

Internal ROM Interface Signals

The internal ROM interface signals are irom_addr, irom_rd_n, 
irom_cs_n, and irom_data_out. Figure 4-12 shows the internal ROM 
interface timing. The access time of internal ROM is exactly 2 clk 
cycles from assertion of irom_rd_n.

The internal ROM read access can also be driven by address only, 
by holding irom_rd_n and irom_cs_n low (always active). The access 
time for address-only internal ROM reads is 3 clk cycles from a valid 
address on irom_addr.
4-42

DW8051 User Guide



Figure 4-12 Internal ROM Interface Timing

Implementing Internal ROM

To implement internal ROM, connect a technology-specific, 
gate-level ROM netlist, supplied by your ASIC vendor, to the internal 
ROM bus. In addition, you may need to implement glue logic so that 
your technology-specific ROM module can meet the signal and timing 
requirements of the DW8051 internal ROM interface.

Interfacing to External Memory Devices

The DW8051 provides the signals needed to interface with external 
ROM and RAM either through standard 8051 port modules (with Port 
0 used as a multiplexed address/data bus), or through a more efficient 
memory interface with a 16-bit address bus.

Standard 8051 Port Modules

The example design (s8032) in the dw8051/example directory 
includes examples of how to build and control standard 8051 port 
modules (P0, P1, P2, and P3). Figure 4-13 illustrates the 
interconnections between DW8051_core and the standard port 

c2c1 c3 c4

rd_addr

irom_cs_n

irom_rd_n

irom_addr

clk

cycle

data_outirom_data_out
4-43

DW8051 User Guide



modules in the example design. Figure 4-14 illustrates the interfaces 
between an 8032-compatible microcontroller built from 
DW8051_core and external ROM and RAM, using the standard 8051 
ports. 

In Figure 4-13, the port_pin_reg_n signal switches between read of 
the port latch and the input pads for instructions that use the 
read-modify-write feature. p0_mem_reg_n and p2_mem_reg_n 
control whether port modules P0 and P2 provide memory or port latch 
data at the output. p0_addr_data_n determines whether port P0 
drives the lower 8 bits of memory address or memory output data. 
The mem_ale signal is used to externally latch the lower 8 address 
bits provided at port P0.

The alternate function inputs and outputs of P1 and P3 do not require 
individual enables to qualify the alternate functions. The 
DW8051_core outputs txd0, rxd0, txd1, rxd1, t2_out, mem_rd_n, and 
mem_wr_n are tied high when the associated peripherals are not 
enabled.
4-44

DW8051 User Guide



Figure 4-13 DW8051_core to Standard Port Module Connections

DW8051_core

rst_out_n

clk

port0

rst_n

7
1

sfr_addr
sfr_data_out

sfr_wr
port_pin_reg_n

mem_addr
mem_data_out

p0_mem_reg_n
mem_data_in

p0_addr_data_n

sfr_data_in

txd1

rxd1_out

t2_out

rxd1_in

t2

t2ex

int2

int3_n

int4

int5_n

p2_mem_reg_n

mem_rd_n

mem_wr_n

txd0

rxd0_out

t1

t0

int1_n

int0_n

rxd0_in

rst_n

sfr_data_out

clk

sfr_cs

alt_out

sfr_data_out

alt_in

str_data_out

6
1

5
1

4
1

3

2

1
1

0

1

2

4

5

6

7

0

7

1

6

1

5
1

4
1

1

3

2

0

5

0

clk

rst_n

sfr_data_out

alt_in
alt_out

sfr_cs_2

[15:8]

sfr_cs

clk

sfr_cs_3

sfr_cs_0

sfr_cs_1

sfr_cs_2

4

3

2

8
8

8
8

8

[7:0]

8

8

8

8

8

8

P1

P0
8

P2

P3

MUX

sfr_cs_3

sfr_cs_1

sfr_cs_0

port1

port2

port3

16
4-45

DW8051 User Guide



Figure 4-14 ROM/RAM Interface for 8032 Built from DW8051_core

Figure 4-15 illustrates the timing for external ROM read access. The 
limiting factor is usually the access time of the (E)PROM from address 
change (access time from rd active is shorter). The required (E)PROM 
access time for this configuration is about 2.7 to 2.9 clock cycles 
(depending on pad/external delays). This equates to approximately 
110 ns for a 25-MHz clock.

Using a standard (E)PROM with 120-ns access time with some 
margins yields a maximum clock frequency of approximately 20 MHz.

S8032

P2

ALE

PSEN

P3[7] rd

P3[6] wr

P0

cs

ROM

addr

rd

do

RAM
cs

di

do

addr

Decode74F373

8

8

16

8

8

n

8

[15:8]

[7:0]

G

di do
4-46

DW8051 User Guide



Figure 4-15 External ROM Timing

16-Bit Address Memory Interface

To implement the 16-bit address bus memory interface, provide all 
16 mem_addr lines as primary output ports, as illustrated in 
Figure 4-16. This eliminates the external latch for the lower address 
bits and makes the mem_ale line obsolete.

clk

rom_data_read

addr

addr rom_data

ext.addr

P0

P2

mem_psrd_n

mem_ale

mem_addr
4-47

DW8051 User Guide



Figure 4-16 16-Bit Address Bus Memory Interface Connections

External ROM Timing

Figure 4-17 illustrates the timing of DW8051_core signals for external 
ROM read access. Figure 4-18 illustrates the external ROM read 
timing for an 8032-compatible microcontroller built from 
DW8051_core.

DW8051

mem_addr

mem_psrd_n

mem_data_in

Decode

mem_rd_n

mem_wr_n

mem_data_out

cs

ROM

addr

rd

do

addr

RAM

cs

rd

do

wr

di

16

8

8

n

m 8
4-48

DW8051 User Guide



Figure 4-17 DW8051_core Signals for Program Memory Read Cycle

Figure 4-18 8032-Compatible I/O Signals for Program Memory Read Cycle

C1 C2 C3 C4 C1 C2 C3 C4 C1

0000 0001 0002

00

1

clk

ZZ 75 ZZ 86 ZZ

p2_mem_reg_n

p0_addr_data_n

p0_mem_reg_n

MD(2:0)

mem_rd_n

mem_wr_n

mem_data_in(7:0)

mem_data_out(7:0)

mem_addr(15:0)

mem_psrd_n

mem_ale

cycle

AD0–AD7

ALE

CYCLE

CLK

C1 C2 C3 C4 C1 C2

ADDRESS A8–A15 OUT ADDRESS A8–A15 OUT

INSTRUCTION IN 

ADDRESS 

A0–A7 OUT

ADDRESS 

A0–A7 OUT

PORT2

PSEN
4-49

DW8051 User Guide



External RAM Timing

The timing for external RAM read and write operations depends on 
the settings of stretch memory cycle control bits (CKCON.2–0). The 
following figures illustrate the DW8051_core signals for a variety of 
stretch memory cycle control settings:

Operation DW8051_core Timing 8032-Compatible Timing

RAM read, Stretch = 0 Figure 4-19 Figure 4-20

RAM write, Stretch = 0 Figure 4-21 Figure 4-22

RAM read, Stretch = 1 Figure 4-23 Figure 4-24

RAM write, Stretch = 1 Figure 4-25 Figure 4-26

RAM write, Stretch = 2 Figure 4-27 Figure 4-28
4-50

DW8051 User Guide



Figure 4-19 DW8051_core Signals for Data Memory Read with Stretch=0

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

ZZ 75 00 86E0 ZZ ZZ ZZ

clk

0006 0008 1234

0

0007 0009

00

p2_mem_reg_n

p0_addr_data_n

p0_mem_reg_n

MD(2:0)

mem_rd_n

mem_wr_n

mem_data_in(7:0)

mem_data_out(7:0)

mem_addr(15:0)

mem_psrd_n

mem_ale

cycle
4-51

DW8051 User Guide



Figure 4-20 8032-Compatible I/O Signals for Data Memory Read with 
Stretch=0

C1 C3C2 C4 C3C2 C4C1 C3C2 C4C1 C3C2 C4C1

MOVX Data

D0–D7 D0–D7

A0–A7

D0–D7D0–D7

A8–A15A8–A15 A8–A15A8–A15

Next 
Instruction 
Machine 

Cycle

Second 
Machine 

Cycle

First
 Machine 

Cycle

Last Cycle 
of 

Previous 
Instruction

MOVX Instruction

MOVX
Instruction
Address

MOVX 
Instruction

Next Instr. 
Address

Next Instr. 
Read

MOVX Data 
Address

A0–A7A0–A7 A0–A7

PORT2

AD0–AD7

RD

PSEN

ALE

CLK
4-52

DW8051 User Guide



Figure 4-21 DW8051_core Signals for Data Memory Write with Stretch=0

0008 000A 12340009 000B

00 55

ZZ 75 ZZ 86F0 ZZ

0

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

clk

p2_mem_reg_n

p0_addr_data_n

p0_mem_reg_n

MD(2:0)

mem_rd_n

mem_wr_n

mem_data_in(7:0)

mem_data_out(7:0)

mem_addr(15:0)

mem_psrd_n

mem_ale

cycle
4-53

DW8051 User Guide



Figure 4-22 8032-Compatible I/O Signals for Data Memory Write with 
Stretch=0

C1 C3C2 C4 C3C2 C4C1 C3C2 C4C1 C3C2 C4C1

MOVX Data

D0–D7 D0–D7

A0–A7

D0–D7D0–D7

A8–A15A8–A15 A8–A15A8–A15

Next 
Instruction 
Machine 

Cycle

Second 
Machine 

Cycle

First
 Machine 

Cycle

Last Cycle 
of 

Previous 
Instruction

MOVX Instruction

MOVX
Instruction
Address

MOVX 
Instruction

Next Instr. 
Address

Next Instr. 
Read

MOVX Data 
Address

A0–A7A0–A7 A0–A7

PORT2

AD0–AD7

WR

PSEN

ALE

CLK
4-54

DW8051 User Guide



Figure 4-23 DW8051_core Signals for Data Memory Read with Stretch=1

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

ZZ 75 00 86E0 ZZ ZZ ZZ

clk

0006 0008 1234

1

0007 0009

00

p2_mem_reg_n

p0_addr_data_n

p0_mem_reg_n

MD(2:0)

mem_rd_n

mem_wr_n

mem_data_in(7:0)

mem_data_out(7:0)

mem_addr(15:0)

mem_psrd_n

mem_ale

cycle
4-55

DW8051 User Guide



Figure 4-24 8032-Compatible I/O Signals for Data Memory Read with 
Stretch=1

C1 C3C2 C4 C3C2 C4C1 C3C2 C4C1 C3C2 C4C1 C3C2 C4C1

MOVX Data

D0–D7 D0–D7

A0–A7

D0–D7D0–D7

A8–A15A8–A15 A8–A15A8–A15

Next 
Instruction 
Machine 

Cycle

Third 
Machine 

Cycle

Second 
Machine 

Cycle

First
 Machine 

Cycle

Last Cycle 
of 

Previous 
Instruction

MOVX Instruction

MOVX
Instruction
Address

MOVX 
Instruction

Next Instr. 
Address

Next Instr. 
Read

MOVX Data 
Address

A0–A7A0–A7 A0–A7

PORT2

AD0–AD7

RD

PSEN

ALE

CLK
4-56

DW8051 User Guide



Figure 4-25 DW8051_core Signals for Data Memory Write with Stretch=1

0008 000A 12340009 000B

00 55

ZZ 75 ZZ 86F0 ZZ

1

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

clk

p2_mem_reg_n

p0_addr_data_n

p0_mem_reg_n

MD(2:0)

mem_rd_n

mem_wr_n

mem_data_in(7:0)

mem_data_out(7:0)

mem_addr(15:0)

mem_psrd_n

mem_ale

cycle
4-57

DW8051 User Guide



Figure 4-26 8032-Compatible I/O Signals for Data Memory Write with 
Stretch=1

C1 C3C2 C4 C3C2 C4C1 C3C2 C4C1 C3C2 C4C1 C3C2 C4C1

MOVX Data

D0–D7 D0–D7

A0–A7

D0–D7D0–D7

A8–A15A8–A15 A8–A15A8–A15

Next 
Instruction 
Machine 

Cycle

Third 
Machine 

Cycle

Second 
Machine 

Cycle

First
 Machine 

Cycle

Last Cycle 
of 

Previous 
Instruction

MOVX Instruction

CLK

MOVX
Instruction 

Address

MOVX 
Instruction

Next Instr. 
Address

Next Instr. 
Read

MOVX Data 
Address

A0–A7A0–A7 A0–A7

PORT2

AD0–AD7

WR

PSEN

ALE
4-58

DW8051 User Guide



Figure 4-27 DW8051_core Signals for Data Memory Write with Stretch=2

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

0017 0019 56780018 001A

ZZ 75 ZZ 8EF0 ZZ

55

20

clk

p2_mem_reg_n

p0_addr_data_n

p0_mem_reg_n

MD(2:0)

mem_rd_n

mem_wr_n

mem_data_in(7:0)

mem_data_out(7:0)

mem_addr(15:0)

mem_psrd_n

mem_ale

cycle
4-59

DW8051 User Guide



Figure 4-28 8032-Compatible I/O Signals for Data Memory Write with 
Stretch=2

Custom SFR Peripheral Integration

You can connect external peripherals to the external SFR bus and 
assign each peripheral any of the unused SFR addresses listed in 
Table 4-8.

Table 4-8 Available SFR Addresses for External Peripherals

80h(1) 90h(1) 93h–97h 9Ah–9Fh A0h(1)–A7h

A9h–AFh B0h(1)–B7h B9h–BFh C2h–C7h C9h

CEh CFh D1h–D7h D9h DAh–DFh

E1h–E7h E9h EAh–EFh F1h–F7h F9h–FFh

Next 
Instr. 
Read

C1 C3C2 C4 C3C2 C4C1 C3C2 C4C1 C3C2 C4C1 C3C2 C4C1 C3C2 C4C1

Fourth
Machine 

Cycle

Third 
Machine 

Cycle

Second 
Machine 

Cycle

First 
Machine 

Cycle

Last Cycle 
of 

Previous 
Instruction

MOVX Instruction

Next 
Instruction 
Machine 

Cycle

MOVX Data

A8–A15 A8–A15A8–A15A8–A15

A0–A7 A0–A7 A0–A7

D0–D7 D0–D7

A0–A7

D0–D7D0–D7

CLK

MOVX

MOVX
Instruction

Next Instr. 
Address

MOVX 
Data 

Address

PORT2

AD0–AD7

WR

PSEN

ALE

Instruction 
Address
4-60

DW8051 User Guide



Figure 4-29 shows the interface between a custom peripheral and 
the DW8051 external SFR bus. The peripheral is assigned a free 
address in the SFR memory map (9Ah in this example).

The output data line sfr_data_9A from this peripheral is multiplexed 
with output data from other peripherals before being fed into the 
DW8051 sfr_data_in port. The sfr_cs_9A signal indicates that the 
DW8051 is performing a write or read access to the peripheral at 
address 9A.

The SFR bus is fully synchronous. The DW8051 performs all SFR 
bus read and write accesses within one clk cycle.

SFR Bus Write Timing

Figure 4-30 illustrates the DW8051 SFR write timing. All SFR write 
accesses occur in C1 of the 4-cycle instruction cycle. That is, data 
on sfr_data_out must be latched with the rising edge of clk at the end 
of C1. sfr_wr is active only during C1 and should therefore be used 
as a load enable signal.

(1) Addresses 80h, 90h, A0h, and B0h are only available if you are not using the associated 
standard 8051 port module (P0, P1, P2, or P3).

Table 4-8 Available SFR Addresses for External Peripherals
4-61

DW8051 User Guide



Figure 4-29 SFR Peripheral Interfacing

clk

reset

clk clk

sfr_addr [7:0]

sfr_wr

sfr_rd

sfr_data_out [7:0]

sfr_data_in [7:0]

output data from other 
SFR peripherals

DW8051

CUSTOM SFR 

BUS INTERFACE 

Peripheral
Address 

(9Ah)

sfr_cs_9A

sfr_data_9A

Compare

UNIT (BIU)

PERIPHERAL

I O

Internal
PeripheralInternal

Data Bus
4-62

DW8051 User Guide



Figure 4-30 SFR Bus Write Timing

SFR Bus Read Timing

Figure 4-31 illustrates the DW8051 SFR read timing. All normal SFR 
read accesses occur in C3. sfr_rd is active during C3 to indicate a 
read access. However, the sfr_rd signal is not necessary for proper 
operation. Data from several external sources can be multiplexed to 
sfr_data_in, according to the decoded sfr_addr. DW8051_core stores 
the data on sfr_data_in at the end of C3. DW8051_core ignores all 
data on sfr_data_in except for read accesses to free SFRs.

One possible usage of sfr_rd is to freeze output data of a transparent 
latch during DW8051_core read. This provides an efficient way to 
implement input ports.

During execution of instructions with indirect source (for example, 
MOV A, @Ri or MOV @Ri, A), and for the POP, RET, and RETI 
instructions, sfr_rd is also active in C2. However, external SFRs are 
always read at the end of C3.

. . .

C3 C4 C2C1C1 C2 C3C4. . .

addr1

clk

cycle

sfr_addr(7:0)

sfr_wr

addr2

data1data0 data2data1

. . .

. . .

. . .sfr_data_out(7:0)
4-63

DW8051 User Guide



Figure 4-31 SFR Bus Read Timing

Reading Designs Back in After Layout

After floorplanning and/or layout, you back-annotate the delays based 
on actual wire and gate loading capacitance into Design Compiler in 
order to:

• Perform static timing analysis

• Incrementally compile your design in synthesis to resolve hold or 
setup time violations, or constraint violations.

This can be accomplished if your layout tool, or that used by your 
vendor, writes SDF (Standard Delay Format) files or writes out a 
dc_shell script file that sets loads on all nets in the design.

If SDF is to be imported, execute the read_timing command using 
the appropriate arguments. Note that the interface to the layout tool 
is critical for optimal design results. Refer to the Design Compiler 
Reference Manual for more information on read_timing.

C1 C2 C3 C1 C2 C3C4 C4C4

clk

cycle

sfr_rd

addr1sfr_addr(7:0)

data1sfr_data_in(7:0)
4-64

DW8051 User Guide



Manufacturing Test

Test synthesis using Synopsys Test Compiler showed that the size 
of the design increased only by approximately 10% for most 
technologies while inserting a scanpath, with the methodologies 
full_scan and multiplexed_flip_flop. The achieved fault coverage was 
greater than 98%.

Any effort spent in adding logic for a full functional test would have 
lead to a considerable increase in gate count. However, full functional 
tests rarely achieve fault coverages over 90%, especially in control 
oriented designs such as the DW8051. Thus, the selected and 
currently supported manufacturing test approach is the scanpath test.

The TestReadyCompile attribute is true by default on DW8051_core, 
which means that Design Compiler performs a test-ready compile 
when you execute the coreConsultant Synthesize activity. 

Scanpath insertion is typically a chip-level function. To help you with 
scanpath insertion for DW8051_core, Synopsys supplies an example 
Test Compiler script (<Workspace>/scan_chain_example/
dw8051_scan_chain.scr). For scanpath testing, be aware of the 
following facts:

• The dw8051_scan_chain.scr script defines the sfr_data_in[7] port 
as the scanpath input (scan_in), and the sfr_data_out[7] port as 
the scanpath output (scan_out).

• The test_mode_n port is a mandatory primary port for scantest.
test_mode_n is used for the following purposes:

- Controllability of the core's reset function:
Because the reset inputs are double-synchronized internally 
and then used as asynchronous resets for all modules of the 
4-65

DW8051 User Guide



core, Test Compiler considers this to be uncontrollable (i.e., the 
asynchronous pin is driven by ungated seqential logic).  The 
test_mode_n pin is used to gate the synchronized reset before 
it is applied to other modules. This ensures that Test Compiler 
considers the internal net to be controllable by an input port or 
a combination of input ports.

- Bypassing the internal RAM from the scan-chain

Because of these two functions, test_mode_n cannot be used to 
double as the test_se (test-scan-enable) pin.  The test_se pin is 
automatically inserted by Test Compiler when the insert_scan 
command is executed.

• One flip-flop used to generate the mem_ale signal is running on 
the inverted clk and is, therefore, excluded from scantest.

The internal RAM and, if present, internal ROM are not tested by the 
scanpath test. These modules have to be tested by a functional test.

Testing Internal RAM

You can test internal RAM by executing a normal 8051 program. The 
assembler programs asm_tests/ram0_chk.a51.unx (for 128-byte 
internal RAM) and asm_tests/ram1_chk.a51.unx (for 256-byte 
internal RAM) provide basic tests to fully test the RAM. You can use 
these files as templates to create more advanced tests if needed.

Consult with your ASIC vendor for other internal RAM test methods.
4-66

DW8051 User Guide



Testing Internal ROM

You can also test internal ROM by executing a normal 8051 program. 
There are two ROM test assembler programs in the asm_tests 
directory: rom_test.a51.unx and rom_dump.a51.unx that you can use 
as examples to create your manufacturing test programs. Refer to 
“Internal ROM Tests” on page 5-9 for descriptions of these tests.

Consult with your ASIC vendor for other internal ROM test methods.

Software Development and Debugging

The complete timing for the DW8051 has been designed to be 
compatible with the Dallas DS80C320 chip. Thus, for software 
development/debugging, in principle, any ICE (in circuit emulator) 
that supports the Dallas DS80C320 can be used with the DW8051. 
However, because the pinout for your design normally will be different 
from the standard 8032 pinout, you must use an ICE that supports 
emulation out of external ROM.

Another strategy is to use development software that communicates 
to a ROM monitor.

For a list of third-party tools that have been used successfully for 
DW8051 software development and debugging, contact your 
Synopsys representative.
4-67

DW8051 User Guide



4-68

DW8051 User Guide



5
DW8051 Test Suite 5

The DW8051 MacroCell Solution includes an extensive test suite that 
you can use to verify your customized DW8051 MacroCell 
implementation. The coreConsultant design flow for the DW8051 
MacroCell includes DW8051-specific activities that configure the test 
suite for your custom DW8051 configuration and execute the test 
programs on your selected VHDL or Verilog simulator.

For most designs, all you need to do for RTL simulation is execute 
the full set of test programs through the coreConsultant GUI. 
However, you can create your own test programs and execute them 
on the DW8051 testbench. To do so, you must operate the test suite 
directly instead of through the coreConsultant GUI.
5-1

DW8051 Test Suite



This chapter provides background information that you need to 
understand how the DW8051 test suite works and how to create and 
execute custom test programs. The topics are:

• Understanding the DW8051 MacroCell Test Suite

• Simulation Procedures

• Creating and Executing Custom Tests

Understanding the DW8051 MacroCell Test Suite

The DW8051 MacroCell Solution includes a comprehensive test suite 
that tests all DW8051 opcodes, internal peripherals, and special 
functions. The test suite includes:

• A testbench that instantiates DW8051_core, plus models and/or 
processes that emulate internal and external ROM and RAM, 
serial port devices, an external SFR device, and a test pattern 
generator to test the interrupt ports

• A set of test programs

• A testbench command file that specifies which test programs the 
testbench will execute

• Scripts that automatically configure the testbench and run the 
simulation

• A set of simulation reference (“golden”) files

• A script that compares your simulation results against the 
simulation reference files

In addition, there are special programs available as examples of how 
to test internal RAM and ROM.
5-2

DW8051 Test Suite



In order to use the DW8051 test suite to verify your DW8051 
implementation, you need to understand the following topics:

• DW8051 testbench architecture

• Test programs

• Testbench command file

DW8051 Testbench Architecture

Figure 5-1 shows a block diagram of the DW8051 testbench 
(DW8051_core_tb). The testbench instantiates DW8051_core as the 
device under test, plus several models to support testing of internal 
peripherals and functions:

• Processes that emulate 64 KB of external ROM and 64 KB of 
external RAM connected to the external memory bus (mem_bus)

• 256-byte internal RAM model connected to the internal RAM bus 
(iram_bus)

• Processes that emulate up to 64 KB of internal ROM connected 
to the internal ROM bus (irom_bus)

• Multiple instances of a test pattern generator that is used for the 
interrupt tests

• Two instances of a serial port device model to support the serial 
port tests

• An external SFR bus device model to support testing the external 
SFR bus

• A special external SFR device model to support the test program 
sfr_iram_test, which verifies that external SFR bus devices are 
not affected by internal RAM accesses
5-3

DW8051 Test Suite



Figure 5-1 DW8051 Testbench Architecture

During simulation, DW8051_core_tb reads the testbench command 
file (DW8051_core_tb.cmd) and executes the test programs listed in 
the command file. As the tests are executed, DW8051_core_tb writes 
out simulation results files that contain traces of the program counter 

Command
File

DW8051_core
Device Under
Test (DUT)

64 KB

External RAM

64 KB

External ROM

Test Pattern
Generators

Interrupt Ports

mem_bus

External SFR
Device Model

Serial Port
Device
Models

sfr_bus

Serial Ports

DW8051_core_tb

Test
Programs

.hex – VHDL
.mem – Verilog

Simulation
Results

.pct, .wrt, .ram, .stbs0,
.stbs1, .stbc, .stbp

DW8051_core_tb.cmd

External SFR
Device Model

Special

irom_bus64 KB
Internal ROM

256 Byte
Internal RAM

iram_bus
5-4

DW8051 Test Suite



and write access to external RAM, and strobes of various 
DW8051_core output signals. Simulation results files are written to 
the directory <workspace>/sim_res_core.

For VHDL, the testbench source files are DW8051_core_tb.vhd 
(entity and architecture) and DW8051_core_tb_cfg.vhd (VHDL 
configuration Conf_DW8051_core_tb).

For Verilog, the testbench source file is DW8051_core_tb.v.

You can easily transfer the functionality of DW8051_core_tb to the 
testbench of your design. For an example of how to do so, see 
s8032_tb.vhd (VHDL) or s8032_tb.v (Verilog) in the example design 
directory (<workspace>/example).

Test Programs

The DW8051_core testbench (DW8051_core_tb) executes standard 
8051 programs that are provided in Intel hex or in a simple hex format 
(one opcode per line). There are tests for all opcodes, internal 
peripherals, and other special functions.

Most instructions of the 8051 architecture operate on internal 
registers and RAM locations. Therefore, the result of an operation is 
not directly observable at the DW8051_core ports. To make the 
results observable, the DW8051 testbench writes all test results to 
external RAM space by use of the MOVX @DPTR,A instruction.

The test programs, located in the directory <workspace>/asm_tests, 
are provided in both assembler source code and in Intel hex format.

For Verilog, the simulation scripts automatically convert the test 
program hex files into formats that can be read by the Verilog 
$readmemh command.
5-5

DW8051 Test Suite



Naming Conventions

The test program filenames follow the naming convention 
test_name.ext. Possible extensions (.ext) are:

Opcode Tests

There are 58 tests for all possible opcodes, with the naming 
convention op_opcode.ext. There are 14 additional opcode tests that 
are used for testing configurations where there is only 128 bytes of 
RAM. These additional tests use the naming convention 
oopcode_s.ext.

Appendix A lists the opcode tests by test name, function tested, and 
opcode.

All opcode tests use, in addition to the opcode in test, a dedicated 
set of instructions that have been tested by detailed manual 
inspection of simulation results. These instructions are:

02 LJMP
12 LCALL
22 RET
90 MOV  DPTR,  #data16
90 MOV  DPTR,  #data16
A3 INC  DPTR
F0 MOVX @DPTR,  A
E5 MOV  A,  direct

.a51 Assembler source code (DOS file)

.a51.unx Assembler source code (UNIX file)

.lst List file generated by assembler

.obj Object file generated by assembler

.hex Intel Hex file generated by Obj-Hex converter
5-6

DW8051 Test Suite



E6, E7 MOV  A,  @Ri
75 MOV  direct,  #data

Miscellaneous Tests

In addition to the opcode tests, there are several miscellaneous test 
programs that verify the operation of the DW8051 internal peripherals 
and special functions. Table 5-1 lists the miscellaneous tests.

Table 5-1 Miscellaneous Tests 

Test Name Function

ram0_chk Test for small internal RAM (128 bytes, ram_256 = 0); template for 
production test

ram1_chk Test for large internal RAM (256 bytes, ram_256 = 1); template for 
production test

rom_dump Dumps internal ROM contents to external RAM; template for production 
test

rom_test Tests transition between internal ROM and external ROM for 
rom_addr_size = 13

div_0, div_1, 
div_2, and div_3

Extensive tests for DIV AB with all operands

idle_tst Test for idle mode feature

int0_xx Tests for DW8051_core with standard interrupt unit

int1_xx Tests for DW8051_core with extended interrupt unit

int_flag Interrupt test for DW8051 configured with extd_intr = 1 and timer2 = 1

int_tst Tests that interrupts are recognized correctly in all instruction cycles and 
that the return addresses are generated properly

md_0_7 Test for DW8051 memory stretch mode feature

mpage Test for MPAGE register
5-7

DW8051 Test Suite



Internal RAM Tests

The test programs ram0_chk (for 128-byte internal RAM) and 
ram1_chk (for 256-byte internal RAM) provide basic tests to fully test 
the internal RAM simulation model. In the testbench command file, 

mul_0, mul_1, 
mul_2, and 
mul_3

Extensive tests for MUL AB with all operands

rel_jmp Test for relative jump over $0000H boundary (SJMP)

s0_xx Tests for DW8051_core Serial Port 0 module

s1_xx Tests for DW8051_core Serial Port 1 module

ext_sfr Test for external SFR bus

sfr_rst Test for SFR reset values

sfr_iram_test Test to verify that SFR and internal RAM accesses do not overlap

t01_out Test for Timer 0 and Timer 1 output

t2_out Test for Timer 2 output

t2_out_s t2_out test for s8032

tim0_xx Tests for Timer 0

tim1_xx Tests for Timer 1

tim2_xx Tests for Timer 2 module

tim_f Tests a full 16-bit counter period for both Timer 0 and Timer 1

ext_ajmp Special test for AJMP instruction

int_ack Test for interrupt acknowledge timing

Table 5-1 Miscellaneous Tests 

Test Name Function
5-8

DW8051 Test Suite



enable either ram0_chk or ram1_chk, as needed for your selected 
internal RAM size. The internal RAM tests are provided in assembler 
source code that you can modify for your implementation or to use 
as templates for manufacturing test programs.

Internal ROM Tests

There are two test programs for internal ROM: rom_test and 
rom_dump. The rom_test program tests the ROM address space 
capability of an 8-KB ROM. The rom_dump program reads the 
contents of internal ROM and dumps the contents to external RAM.

Both of the ROM test programs are written for 8-KB ROM 
(rom_addr_size = 13). If you are using a different internal ROM size, 
you must modify the test programs. Like all of the test programs, the 
internal ROM tests are provided in assembler source code that you 
can modify for your implementation or to use as templates for 
manufacturing test programs.

rom_test

The rom_test.a51.unx program tests the ROM address space 
capability of an 8-KB ROM (rom_addr_size = 13). The rom_test 
program requires a ROM contents file that the testbench 
automatically loads into internal and external ROM:

• For the VHDL version of the DW8051 MacroCell, the testbench 
automatically loads a ROM contents file (<workspace>/
asm_tests/rom_test.hex) into the memory arrays that emulate 
internal and external ROM.

• For the Verilog version of the DW8051 MacroCell, the testbench 
automatically loads a ROM contents file (<workspace>/
asm_tests/rom_test.mem) into a single program memory array 
that emulates both internal and external ROM.
5-9

DW8051 Test Suite



If you are specifying a value other than 13 for rom_addr_size, you 
must modify and recompile the test program rom_test.a51.unx. When 
you recompile rom_test.a51.unx, the associated ROM contents file 
is automatically regenerated for the selected rom_addr_size value.

rom_dump

The rom_dump.a51.unx program reads the contents of internal ROM 
and dumps the contents to external RAM. Like the rom_test program, 
rom_dump is designed for an 8-KB internal ROM and must be 
modified to support any other internal ROM size. The rom_dump test 
is disabled by default in testbench command file 
(DW8051_core_tb.cmd.all).

The rom_dump also requires a ROM contents file that the testbench 
automatically loads into internal ROM:

• For the VHDL version of the DW8051 MacroCell, the testbench 
automatically loads a ROM contents file (<workspace>/
asm_tests/rom_dump.hex) into the memory array that emulates 
internal ROM.

• For the Verilog version of the DW8051 MacroCell, the testbench 
automatically loads a ROM contents file (<workspace>/
asm_tests/rom_dump.mem) into a single program memory array 
that emulates both internal and external ROM.

If you are specifying a value other than 13 for rom_addr_size, you 
must modify and recompile the test program rom_dump.a51.unx. 
When you recompile rom_dump.a51.unx, the associated ROM 
contents file is automatically regenerated for the selected 
rom_addr_size value.
5-10

DW8051 Test Suite



The rom_dump.a51.unx program is based on the MOVC A,@A+DPTR 
instruction and is executed out of external code memory. To use the 
rom_dump.a51.unx test, the mem_ea_n port has to be a primary port 
of your design.

At start of the test, the mem_ea_n port has to be held low so that the 
test program is executed out of external code memory. Each time a 
MOVC A,@A+DPTR instruction has been read from external memory, 
the mem_ea_n port must be held high for 11 clock cycles (the MOVC 
A,@A+DPTR instruction executes in 3 instruction cycles) to fetch the 
code from internal ROM instead of the external ROM. Read ROM 
contents are then written to external RAM space and can be observed 
at the mem_data_out port.

DW8051_core_tb provides a function for automatic toggle of the 
mem_ea_n port. If enabled (:romchk_on), DW8051_core_tb detects 
a read from external ROM when the MOVC A,@A+DPTR opcode (93h) 
is used and automatically holds the mem_ea_n port high for 11 clock 
cycles.

Note:   
The ROM check program should contain no other code with data 
93h.

Testbench Command File

The testbench command file DW8051_core_tb.cmd controls the 
operation of the testbench. The command file contains several 
commands and names of test programs to be executed. 
5-11

DW8051 Test Suite



coreConsultant automatically configures the testbench command file 
when you execute the Test Suite Configuration activity. You can also 
manually edit the testbench command file to add the names of any 
custom test programs that you want to execute.

Verilog simulators also require the command file 
(DW8051_core_tb.cmd) to be converted into a Verilog task 
(DW8051_core_tb.task). The testbench simulation script that 
coreConsultant generates invokes a set of supplied Perl scripts to 
perform this conversion automatically.

Command File Format

In the DW8051_core_tb.cmd file, comment lines can start with a hash 
(#), semicolon (;), or blank. Commands always start with a colon (:). 
Table 5-2 lists the commands that are currently accepted. All other 
lines are treated as names of test programs.

Command File Example

Example 5-1 shows an example testbench command file 
(DW8051_core_tb.cmd) that invokes the test for opcode 84h 
(DIV AB). When you run the simulation, the testbench executes the 
op_84 test and produces .pct, .wrt, .stbc, and .ram files.

Example 5-1 Testbench Command File for Opcode 84h

:op_test_ih    ; opcode test with Intel hex file input
:pct_on        ; PC trace on
:wrt_on        ; RAM write trace on 
:stbc_on       ; Core signal strobe on 
op_84          ; Test for DIV AB 
:pct_off        ; PC trace off
:wrt_off        ; RAM write trace off 
:stbc_on       ; Core signal strobe off
:eot           ; done
5-12

DW8051 Test Suite



Table 5-2 Testbench Command File Commands 

Command Function

:pct_on Turns on dump of PC trace for following test programs. PC traces 
are written to ../sim_res_core/test_name.pct. 

:pct_off Turns off dump of PC trace.

:wrt_on Turns on dump of RAM write trace for following test programs. RAM 
write traces are written to ../sim_res_core/test_name.wrt.

:wrt_off Turns off dump of RAM write trace.

:stbc_on Turns on strobe of DW8051_core signals. Strobe files are written to 
../sim_res_core/test_name.stbc.

:stbc_off Turns off strobe of DW8051_core signals.

:stbs0_on Turns on strobe of Serial Port 0 signals (rxd0 and txd0). (rxd0 is a 
combination of rxd0_in and rxd0_out). 

:stbs0_off Turns off strobe of Serial Port 0 signals.

:stbs1_on Turns on strobe of Serial Port 1 signals (rxd1 and txd1). (rxd1 is a 
combination of rxd1_in and rxd1_out).

:stbs1_off Turns off strobe of Serial Port 1 signals.

:romchk_on Turns on toggle of mem_ea_n for ROM check. 

:romchk_off Turns off toggle of mem_ea_n for ROM check. 

:op_test_sh Defines following test_names as opcode tests with simple hex file 
input. Files are read from ../asm_tests/test_name.shex. shex files 
are designated for very simple opcode tests only. Hex opcodes (first 
2 characters of a line) are read line-by-line into consecutive ROM 
locations, starting at 0000h. Any characters behind the first 2 
characters of a line are treated as comments. Comment lines must 
start with a semicolon (;). 
5-13

DW8051 Test Suite



Modifying the Testbench Command File Manually

The coreConsultant DW8051-specific Test Suite Configuration 
activity automatically generates a testbench command file that 
includes the set of test programs that you specify. However, you can 
only select from the list of supplied test programs. If you want to add 
your own custom test programs to the testbench command file, then 
you must edit the testbench command file manually. To do so, perform 
the following steps:

1. Open the file <workspace>/testbench/DW8051_core_tb.cmd  for 
editing.

2. Refer to Table 5-1 and the comments in DW8051_core_tb.cmd 
to determine which tests you want to disable.

3. Place a comment symbol (#) at the beginning of the line of each 
test program you want to disable.

The DW8051_core_tb.cmd.all file lists the opcode tests for a 
256-byte internal RAM implementation of the DW8051. However, 
for certain opcodes, the opcode tests are different for the 128-byte 
internal RAM implementation. These opcode tests, listed 
separately in Appendix A have _s appended to the test name. If 
you are implementing the 128-byte internal RAM (ram256 = 0), 
disable the 256-byte version of these tests and enable the 

:op_test_ih Defines following test_names as opcode tests with standard Intel hex 
file input. Files are read from ../asm_tests/test_name.hex. Intel hex 
files are accepted either in UNIX or DOS format. Thus, all 
programming tools for machines running UNIX or DOS can be used 
to develop test programs. Development of the DW8051 test suite 
employed a standard DOS A51 assembler, L51 linker/ locator and 
OBJHEX object/hex code converter.

Table 5-2 Testbench Command File Commands 

Command Function
5-14

DW8051 Test Suite



128-byte versions. The DW8051_core_tb.cmd.all file contains 
comments to help you select the correct opcode tests for your 
selected internal RAM size.

4. Save and close DW8051_core_tb.cmd.

Testbench File Conversion for Verilog

Because of the limited file input operations in Verilog, the DW8051 
test programs and testbench command file must be converted into 
formats that can be used by the Verilog simulator. There are two Perl 
scripts available that perform the required conversions:

<workspace>/asm_tests/ihex2mem.pl

Converts test programs from Intel hex format to a format that can 
be read by the Verilog $readmemh command.

<workspace>/testbench/cmd2task_c.pl

Converts testbench command file into a Verilog task.

The simulation run script (Simulation.log) that coreConsultant 
generates when you execute the Run Simulation activity 
automatically invokes cmd2task_c.pl with the -c option to convert the 
testbench command file and all enabled test programs to the required 
formats before beginning the simulation. The following sections 
describe how the conversion scripts work for informational purposes.

Converting the Test Programs with ihex2mem.pl

Because of the limited file input operations in Verilog, Intel hex files 
generated from assembler, C, or PL/M sources must be converted 
into a format that can be read by the Verilog $readmemh command.
5-15

DW8051 Test Suite



In the Verilog versions of the DW8051 MacroCell Solution, there is a 
Perl script, ihex2mem.pl, in the asm_tests directory that performs the 
required conversion for you. For example, to convert the files 
op94.hex and op95.hex to op94.mem and op95.mem, execute the 
command:

% perl ihex2mem.pl op94.hex op95.hex

Converting the Testbench Command File with cmd2task.pl

Due to the limited file read operations of Verilog, the 
DW8051_core_tb.cmd file must be converted into a Verilog task, 
DW8051_core_tb.task. The Verilog task is then included by the 
testbench.

In the Verilog versions of the DW8051 MacroCell Solution, there is a 
Perl script, cmd2task_c.pl, in the src directory that performs the 
required conversion for you. The cmd2task_c.pl script reads the 
(modified) DW8051_core_tb.cmd file and converts it to 
DW8051_core_tb.task. Because the .cmd file contains a list of 
programs to be read and executed, there is a -c (convert) option to 
the cmd2task_c.pl script that automatically converts the 
corresponding .hex files to .mem files.

For example, after you modify the DW8051_core_tb.cmd file, execute 
the following command to convert DW8051_core_tb.cmd to 
DW8051_core_tb.task and automatically convert all of the enabled 
test programs from .hex files to .mem files:

% perl cmd2task_c.pl -c
5-16

DW8051 Test Suite



Simulation Procedures

coreConsultant automatically configures the testbench and testbench 
command file to match your selected DW8051 configuration when 
you execute the testbench configuration and simulation procedures 
through the coreConsultant GUI.

After your perform the coreConsultant DW8051-specific simulation 
activities at least once, you can re-execute the test suite at any time 
by going to your workspace testbench directory and executing the 
simulation run script. The name of the simulation run script is 
SimScript.csh unless you selected a different name when you 
executed the Run Simulation activity. For example, to run the default 
simulation run script, execute the following commands:

% cd <workspace>/testbench
% cd ./SimScript.csh

If you want to execute your own custom test programs, either instead 
of or in addition to the supplied test programs, then you must also 
manually edit the testbench command file to include your custom test 
programs before you run the simulation. Refer to "Creating and 
Executing Custom Tests" for details.

Creating and Executing Custom Tests

In addition to the test programs provided with the DW8051 test suite, 
you can create and execute your own custom test programs, using 
the DW8051 testbench. For example, you can extend the testbench 
to test user-defined peripherals connected to DW8051_core (for 
5-17

DW8051 Test Suite



example, through the SFR bus interface) by incorporating the 
peripherals into the testbench and writing test programs for the 
peripherals.

The coreConsultant interface to the DW8051 test suite does not 
provide for inclusion of custom test programs. To execute your 
custom programs in the DW8051 test suite, you must manually modify 
the testbench command file and manually operate the testbench 
using the supplied simulation scripts. 

Writing Test Programs

To create test programs, use any of the supplied assembly test 
programs as an example to create a new test program 
(my_test.a51.unx). The testbench also provides facilities for 
initialization and/or dump of registers/memory and error handling in 
test programs.

Initialization/Dump Facilities

Some of the tests use include files for initialization and/or dump of 
selected internal registers and memory locations. You can also use 
these include files in your custom test programs. The provided include 
files are:

init.inc.unx

Initializes internal RAM locations 00h–37h and 70h–8Fh with their 
own addresses. 

big_dump.inc.unx

Dumps selected registers/internal memory locations to external 
memory (with the MOVX @DPTR,A instruction). The dump is 128 
bytes long and matches the length of the dump of the external 
5-18

DW8051 Test Suite



memory contents to the file ../sim_res_core/test_name.ram that 
occurs if the program terminates at address 0FFFCh/0FFFFh. 
(This function is provided by DW8051_core_tb). Table 5-3 lists 
the memory dump contents for big_dump.inc.unx.

bdump_s.inc.unx

Modified version of big_dump.inc.unx that does not dump 
contents of internal memory locations 80h–8Fh. This file is for 
configurations with 128 bytes of internal RAM. Table 5-4 lists the 
memory dump contents for bdump_s.inc.unx.

Table 5-3 Memory Dump Contents for big_dump.inc.unx

Address Range Contents

00h–1Fh Internal RAM, direct/indirect (00h–1Fh)

20h–2Fh Bit addressable segment (20h–2Fh)

30h–37h Scratchpad memory area 30h–37h

38h–5Fh Selected SFRs, as listed in Table 5-5

60h–7Fh Internal RAM, indirect (70h–8Fh)

Table 5-4 Memory Dump Contents for bdump_s.inc.unx 

Address Range Contents

00h–1Fh Internal RAM, direct/indirect (00h–1Fh)

20h–2Fh Bit addressable segment (20h–2Fh)

30h–37h Scratchpad memory area 30h–37h

38h–5Fh Selected SFRs, as listed in Table 5-5

60h–6Fh Internal RAM, indirect (70h–7Fh)
5-19

DW8051 Test Suite



Error Handling Facilities

To determine the end of a (partial) test, there must be a jump to a 
location in the range 0FFFAh–0FFFFh at the end of the test. 
DW8051_core_tb keeps track on opcode fetches from one of these 
addresses and stops execution, with additional actions depending on 
the detected address as listed in Table 5-6.

By jumping to different exit addresses a test program can report if an 
error has been detected and perform external RAM dumps of different 
sizes.

Table 5-5 Selected SFRs in Memory Dump Addresses 38h–5Fh 

Addr Content Addr Content Addr Content

38h 80h 46h CKCON (@8Eh) 54h RCAP2H (@CBh)

39h SP (@81h) 47h 90h 55h TL2 (@CCh)

3Ah DPL0 (@82h) 48h EXIF (@91h) 56h TH2 (@CDh)

3Bh DPH0 (@83h) 49h SCON0 (@98h) 57h PSW (@D0h)

3Ch DPL1 (@84h) 4Ah 99h 58h D8h

3Dh DPH1 (@85h) 4Bh A0h 59h ACC (@E0h)

3Eh DPS (@86h) 4Ch IE (@A8h) 5Ah EIE (@E8h)

3Fh PCON (@87h) 4Dh B0h 5Bh B (@F0h)

40h TCON (@88h) 4Eh IP (@B8h) 5Ch EIP (@F8h)

41h TMOD (@89h) 4Fh SCON1 (@C0h) 5Dh –

42h TL0 (@8Ah) 50h C1h 5Eh –

43h TL1 (@8Bh) 51h T2CON (@C8h) 5Fh –

44h TH0 (@8Ch) 52h C9h - -
5-20

DW8051 Test Suite



Assembling and Executing Custom Test Programs 

After you write your custom test program, perform the following steps 
to assemble the test program and execute the test program in the 
DW8051 test suite:

1. Configure and operate the test suite at least once through 
coreConsultant by performing the DW8051-specific simulation 
activities. This step is necessary to set up the test suite.

2. Place your test program in the asm_tests directory of your 
workspace, for example:

% cd <workspace>/asm_tests

45h TH1 (@8Dh) 53h RCAP2L (@CAh) - -

Table 5-6 Testbench Exit Addresses and Actions 

Exit Address Action

0FFFAh Stop execution of test, print ”--- Error in test detected !”, no RAM dump.

0FFFBh Stop execution of test, print ”--- Error in test detected !”, dump first 32 bytes 
of simulated external RAM to file ../sim_res_core/test_name.ram.

0FFFCh Stop execution of test, print ”--- Error in test detected !”, dump first 128 bytes 
of simulated external RAM to file ../sim_res_core/test_name.ram.

0FFFDh Stop execution of test, no error message, no RAM dump.

0FFFEh Stop execution of test, no error message, dump first 32 bytes of simulated 
external RAM to file ../sim_res_core/test_name.ram.

0FFFFh Stop execution of test, no error message, dump first 128 bytes of simulated 
external RAM to file ../sim_res_core/test_name.ram.

Table 5-5 Selected SFRs in Memory Dump Addresses 38h–5Fh 

Addr Content Addr Content Addr Content
5-21

DW8051 Test Suite



% ls my_test.*
my_test.a51.unx

3. Assemble the program using a standard 8051 assembler. There 
are a variety of shareware standard 8051 assemblers available.

4. Verify that the assembler created the correct output files:

% ls my_test.*
my_test.a51.unx
my_test.hex
my_test.lst

5. Modify the testbench command file to include your new test 
program. ( See “Modifying the Testbench Command File 
Manually” on page 5-14 for details.)

6. Run the simulation and examine the results on a simulation 
waveform viewer.

After you determine the test results are valid, you can use the 
simulation output files that the testbench writes to the 
sim_res_core directory as a reference files for future simulations. 

7. Move the validated simulation output files to the sim_reference 
directory:

% cd <workspace>/sim_res_core
% mv my_test.* ../sim_reference

For future simulations of the new test (my_test), perform the following 
steps:

1. Go to the <workspace>/testbench directory:

% cd <workspace>/testbench

2. Make sure that DW8051_core_tb.cmd is configured to include 
your custom test.
5-22

DW8051 Test Suite



3. Execute the simulation run script (the default name for the 
simulation run script is SimScript.csh):

% ./SimScript.csh

4. View the simulation log file by executing the coreConsultant View 
Simulation Log activity.
5-23

DW8051 Test Suite



5-24

DW8051 Test Suite



A
Opcode Tests A

The following tables list the opcode tests in dw8051/asm_tests. 
Table A-1 lists the tests in order of instruction type. Table A-2 lists 
the tests in order of test name. Table A-3 lists the tests in order of 
hex opcode.

In addition, there are modified versions of 13 of the opcode tests.  
These tests, listed in Table A-4, use the naming convention 
oopcode_s and are used for configurations where there are 128 bytes 
of internal RAM (ram_256 = 0). 

Table A-1 Opcode Tests Sorted by Instruction Type  

Instruction Test Name Instruction Test Name

ARITHMETIC 
OPERATIONS

ARITHMETIC 
OPERATIONS

   
A-1

Opcode Tests



ADD A, Rn op_28_3f INC A op_04_0f

ADD A, direct op_25_35 INC Rn op_04_0f 

ADD A, @Ri op_26_37 INC direct op_04_0f

ADD A, #data op_24_34 INC @Ri op_04_0f

ADDC A, Rn op_28_3f DEC A op_14_1f

ADDC A, direct op_25_35 DEC Rn op_14_1f

ADDC A, @Ri op_26_37 DEC direct op_14_1f

ADDC A, #data op_24_34 DEC @Ri op_14_1f

SUBB A, Rn op_98_9f INC DPTR   op_a3

SUBB A, direct op_95 MUL AB op_a4

SUBB A, @Ri op_96_97 DIV AB op_84

SUBB A, #data op_94 DA A op_d4

LOGICAL 
OPERATIONS 

LOGICAL 
OPERATIONS

ANL A, Rn op_52_5f XRL A, direct op_62_6f

ANL A, direct op_52_5f XRL A, @Ri op_62_6f

ANL A, @Ri op_52_5f XRL A, #data op_62_6f

ANL A, #data op_52_5f XRL direct, A op_62_6f

ANL direct, A op_52_5f XRL direct, #data op_62_6f

ANL direct, #data op_52_5f CLR A op_x3_x4

ORL A, Rn op_42_4f CPL A op_x3_x4

ORL A, direct op_42_4f RL A op_x3_x4

Table A-1 Opcode Tests Sorted by Instruction Type (continued) 

Instruction Test Name Instruction Test Name
A-2

Opcode Tests



ORL A, @Ri op_42_4f RLC A op_x3_x4

ORL A, #data op_42_4f RR A op_x3_x4

ORL direct, A op_42_4f RRC A op_x3_x4

ORL direct, #data op_42_4f SWAP A op_x3_x4

XRL A, Rn op_62_6f - -

DATA TRANSFER DATA TRANSFER

MOV A, Rn op_e8_ef MOV @Ri, #data op_76_77

MOV A, direct   op_e5 MOV DPTR, #data16 op_90_f0

MOV A, @Ri      op_e6_e7 MOVC A, @A+DPTR op_93

MOV A, #data op_74 MOVC A, @A+PC op_83

MOV Rn, A op_f8_ff MOVX A, @Ri op_e2_e3

MOV Rn, direct op_a8_af MOVX A, @DPTR op_e0

MOV Rn, #data op_78_7f MOVX @Ri, A op_7a_7b

MOV direct, A op_f5 MOVX @DPTR, A   op_90_f0

MOV direct, Rn op_88_8f PUSH direct op_c0

MOV direct, direct op_85 POP direct op_d0

MOV direct, @Ri op_86_87 XCH A, Rn op_c8_cf

MOV direct, #data op_75 XCH A, direct op_c5

MOV @Ri, A op_f6_f7 XCH A, @Ri op_c6_c7

MOV @Ri, direct op_a6_a7 XCHD A, @Ri op_d6_d7

BIT MANIPULATION BIT MANIPULATION

Table A-1 Opcode Tests Sorted by Instruction Type (continued) 

Instruction Test Name Instruction Test Name
A-3

Opcode Tests



CLR C op_x2_x3 ORL C, /bit op_x2_x3

CLR bit op_x2_x3 MOV C, bit op_x2_x3

SETB C op_x2_x3 MOV bit, C op_x2_x3

SETB bit op_x2_x3 JC rel op_40_50

CPL C op_x2_x3 JNC rel op_40_50

CPL bit op_x2_x3 JB bit, rel op_10_30

ANL C, bit op_x2_x3 JNB bit, rel op_10_30

ANL C, /bit op_x2_x3 JBC bit, rel op_10_30

ORL C, bit op_x2_x3 - -

PROGRAM 
BRANCHING

PROGRAM 
BRANCHING

ACALL addr11 op_11_f1 JNZ rel op_60_70

LCALL addr16 op_12 CJNE A, direct, rel op_b4_bf

RET op_22 CJNE A, #data, rel op_b4_bf

RETI    op_32 CJNE Rn, #data, rel op_b4_bf

AJMP addr11 op_01_e1 CJNE @Ri, #data, rel op_b4_bf

LJMP addr16 op_02 DJNZ Rn, rel op_d5_df

SJMP rel op_80 DJNZ direct, rel op_d5_df

JMP @A+DPTR op_73 NOP op_00_a5

JZ rel op_60_70 - -

Table A-1 Opcode Tests Sorted by Instruction Type (continued) 

Instruction Test Name Instruction Test Name
A-4

Opcode Tests



Table A-2 Opcode Tests Sorted by Test Name  

Test Name Opcode(s) Tested Instruction

op_00_a5 00, A5 NOP

op_01_e1 01, 21, 41, 61, 81, A1, C1, E1 AJMP

op_02 02 LJMP

04 INC  A

op_04_0f 05 INC  direct

06,07 INC  @Ri

08–0F INC  Rn

10 JBC

op_10_30 20 JB

30 JNB

op_11_f1 11, 31, 51, 71, 91, B1, D1, F1  ACALL

op_12 12 LCALL

14 DEC  A

op_14_1f 15 DEC  direct

16, 17 DEC  @Ri

18–1F DEC  Rn

op_22 22 RET

op_24_34 24 ADD  A, #data

34 ADDC A, #data

op_25_35 25 ADD  A, direct
A-5

Opcode Tests



35 ADDC A, direct

op_26_37 26, 27 ADD  A, @Ri

36, 37 ADDC A, @Ri

op_28_3f 28–2F ADD  A, Rn

38–3F ADDC A, Rn

op_32 32 RETI

op_40_50 40 JC

50 JNC

42 ORL  direct, A

43 ORL  direct, #data

op_42_4f 44 ORL  A, #data

45 ORL  A, direct

46, 47 ORL  A, @Ri

48–4F ORL  A, Rn

52 ANL  direct, A

53 ANL  direct, #data

op_52_5f 54 ANL  A, #data

55 ANL  A, direct

56, 57 ANL  A, @Ri

58–5F ANL  A, Rn

op_60_70 60 JZ

Table A-2 Opcode Tests Sorted by Test Name (continued) 

Test Name Opcode(s) Tested Instruction
A-6

Opcode Tests



70 JNZ

62 XRL  direct, A

63 XRL  direct, #data

op_62_6f 64 XRL  A, #data

65 XRL  A, direct

66, 67 XRL  A, @Ri

68–6F XRL  A, Rn

op_73 73 JMP  @A+DPTR

op_74 74 MOV  A, #data

op_75 75 MOV  direct, #data

op_76_77 76, 77 MOV  @Ri, #data

op_78_7f 78–7F MOV  Rn, #data

op_80 80 SJMP

op_83 83 MOVC A, @A+PC

op_84 84 DIV  AB

op_85 85 MOV  direct, direct

op_86_87 86, 87 MOV  direct, @Ri

op_88_8f 88–8F MOV  direct, Rn

op_90_f0 90 MOV  DPTR, #data

F0 MOVX  @DPTR, A

op_93 93 MOVC A, @A+DPTR

Table A-2 Opcode Tests Sorted by Test Name (continued) 

Test Name Opcode(s) Tested Instruction
A-7

Opcode Tests



op_94 94 SUBB A, #data

op_95 95 SUBB A, direct

op_96_97 96, 97 SUBB A, @Ri

op_98_9f 98–9F SUBB A, Rn

op_a3 A3 INC DPTR

op_a4 A4 MUL  AB

op_a6_a7 A6, A7 MOV  @Ri, direct

op_a8_af A8–AF MOV  Rn, direct

B4 CJNE A, #data

op_b4_bf B5 CJNE A, direct

B6, B7 CJNE @Ri, #data

B8–BF CJNE Rn, #data

op_c0_d0 C0 PUSH direct

D0 POP  direct

op_c5 C5 XCH  A, direct

op_c6_c7 C6, C7 XCH  A, @Ri

op_c8_cf C8–CF XCH  A, Rn

op_d4 D4 DA A

op_d5_df D5 DJNZ direct

D8–DF DJNZ Rn

op_d6_d7 D6, D7 XCHD A, @Ri

Table A-2 Opcode Tests Sorted by Test Name (continued) 

Test Name Opcode(s) Tested Instruction
A-8

Opcode Tests



op_e0 E0 MOVX A, @DPTR

op_e2_f3 E2, E3 MOVX A, @Ri

F2, F3 MOVX @Ri, A

op_e5 E5 MOV  A, direct

op_e6_f7 E6, E7 MOV A, @Ri

op_e8_ef E8–EF MOV  A, Rn

op_f5 F5 MOV  direct, A

op_f6_f7 F6, F7 MOV  @Ri, A

op_f8_ff F8–FF MOV  Rn, A

A2 MOV  C, bit

92 MOV  bit, C

82 ANL  C, bit

B0 ANL  C, /bit

72 ORL  C, bit

op_x2_x3 A0 ORL  C, /bit

C3 CLR  C

C2 CLR  bit

B3 CPL  C

B2 CPL  bit

D3 SETB C

D2 SETB bit

Table A-2 Opcode Tests Sorted by Test Name (continued) 

Test Name Opcode(s) Tested Instruction
A-9

Opcode Tests



E4 CLR  A

F4 CPL  A

23 RL A

op_x3_x4 33 RLC  A

03 RR A

13 RRC  A

C4 SWAP A

Table A-3 Opcode Tests Sorted by Opcode   

Opcode Mnemonic Test Name Opcode Mnemonic Test Name

00 NOP op_00_a5 80 SJMP op_80

01 AJMP op_01_e1 81 AJMP op_01_e1

02 LJMP op_02 82 ANL C,bit op_x2_x3

03 RR A op_x3_x4 83 MOVC A,@A+PC op_83

04 INC A op_04_0f 84 DIV AB op_84

05 INC direct op_04_0f 85 MOV dir,dir op_85

06 INC @R0 op_04_0f 86 MOV dir,@R0 op_86_87

07 INC @R1 op_04_0f 87 MOV dir,@R1 op_86_87

08 INC R0 op_04_0f 88 MOV dir,R0 op_88_8f

09 INC R1 op_04_0f 89 MOV dir,R1 op_88_8f

Table A-2 Opcode Tests Sorted by Test Name (continued) 

Test Name Opcode(s) Tested Instruction
A-10

Opcode Tests



0A INC R2 op_04_0f 8A MOV dir,R2 op_88_8f

0B INC R3 op_04_0f 8B MOV dir,R3 op_88_8f

0C INC R4 op_04_0f 8C MOV dir,R4 op_88_8f

0D INC R5 op_04_0f 8D MOV dir,R5 op_88_8f

0E INC R6 op_04_0f 8E MOV dir,R6 op_88_8f

0F INC R7 op_04_0f 8F MOV dir,R7 op_88_8f

10 JBC op_10_30 90 MOV 
DPTR,#data

op_90_f0

11 ACALL op_11_f1 91 ACALL op_11_f1

12 LCALL op_12 92 MOV bit,C op_x2_x3

13 RRC A op_x3_x4 93 MOVC 
A,@A+DPTR

op_93

14 DEC A op_14_1f 94 SUBB A,#data op_94

15 DEC direct op_14_1f 95 SUBB A,dir op_95

16 DEC @R0 op_14_1f 96 SUBB A,@R0 op_96_97

17 DEC @R1 op_14_1f 97 SUBB A,@R1 op_96_97

18 DEC R0 op_14_1f 98 SUBB A,R0 op_98_9f

19 DEC R1 op_14_1f 99 SUBB A,R1 op_98_9f

1A DEC R2 op_14_1f 9A SUBB A,R2 op_98_9f

1B DEC R3 op_14_1f 9B SUBB A,R3 op_98_9f

1C DEC R4 op_14_1f 9C SUBB A,R4 op_98_9f

1D DEC R5 op_14_1f 9D SUBB A,R5 op_98_9f

Table A-3 Opcode Tests Sorted by Opcode (continued)  

Opcode Mnemonic Test Name Opcode Mnemonic Test Name
A-11

Opcode Tests



1E DEC R6 op_14_1f 9E SUBB A,R6 op_98_9f

1F DEC R7 op_14_1f 9F SUBB A,R7 op_98_9f

20 JB op_10_30 A0 ORL C,/bit op_x2_x3

21 AJMP op_01_e1 A1 AJMP op_01_e1

22 RET op_22 A2 MOV C,bit op_x2_x3

23 RL A op_x3_x4 A3 INC DPTR op_a3

24 ADD A,#data op_24_34 A4 MUL AB op_a4

25 ADD A,dir op_25_35 A5 reserved op_00_a5

26 ADD A,@R0 op_26_37 A6 MOV @R0,dir op_a6_a7

27 ADD A,@R1 op_26_37 A7 MOV @R1,dir op_a6_a7

28 ADD A,R0 op_28_3f A8 MOV R0,dir op_a8_af

29 ADD A,R1 op_28_3f A9 MOV R1,dir op_a8_af

2A ADD A,R2 op_28_3f AA MOV R2,dir op_a8_af

2B ADD A,R3 op_28_3f AB MOV R3,dir op_a8_af

2C ADD A,R4 op_28_3f AC MOV R4,dir op_a8_af

2D ADD A,R5 op_28_3f AD MOV R5,dir op_a8_af

2E ADD A,R6 op_28_3f AE MOV R6,dir op_a8_af

2F ADD A,R7 op_28_3f AF MOV R7,dir op_a8_af

30 JNB op_10_30 B0 ANL C,/bit op_x2_x3

31 ACALL op_11_f1 B1 ACALL op_11_f1

32 RETI op_32 B2 CPL bit op_x2_x3

Table A-3 Opcode Tests Sorted by Opcode (continued)  

Opcode Mnemonic Test Name Opcode Mnemonic Test Name
A-12

Opcode Tests



33 RLC A op_x3_x4 B3 CPL C op_x2_x3

34 ADDC A,#data op_24_34 B4 CJNE A,#data op_b4_bf

35 ADDC A,dir op_25_35 B5 CJNE A,dir op_b4_bf

36 ADDC A,@R0 op_26_37 B6 CJNE @R0,#data op_b4_bf

37 ADDC A,@R1 op_26_37 B7 CJNE @R1,#data op_b4_bf

38 ADDC A,R0 op_28_3f B8 CJNE R0,#data op_b4_bf

39 ADDC A,R1 op_28_3f B9 CJNE R1,#data op_b4_bf

3A ADDC A,R2 op_28_3f BA CJNE R2,#data op_b4_bf

3B ADDC A,R3 op_28_3f BB CJNE R3,#data op_b4_bf

3C ADDC A,R4 op_28_3f BC CJNE R4,#data op_b4_bf

3D ADDC A,R5 op_28_3f BD CJNE R5,#data op_b4_bf

3E ADDC A,R6 op_28_3f BE CJNE R6,#data op_b4_bf

3F ADDC A,R7 op_28_3f BF CJNE R7,#data op_b4_bf

40 JC op_40_50 C0 PUSH direct op_c0_d0

41 AJMP op_01_e1 C1 AJMP op_01_e1

42 ORL dir,A op_42_4f C2 CLR bit op_x2_x3

43 ORL dir,#data op_42_4f C3 CLR C op_x2_x3

44 ORL A,#data op_42_4f C4 SWAP A op_x3_x4

45 ORL A,dir op_42_4f C5 XCH A,dir op_c5

46 ORL A,@R0 op_42_4f C6 XCH A,@R0 op_c6_c7

47 ORL A,@R0 op_42_4f C7 XCH A,@R1 op_c6_c7

Table A-3 Opcode Tests Sorted by Opcode (continued)  

Opcode Mnemonic Test Name Opcode Mnemonic Test Name
A-13

Opcode Tests



48 ORL A,R0 op_42_4f C8 XCH A,R0 op_c8_cf

49 ORL A,R1 op_42_4f C9 XCH A,R1 op_c8_cf

4A ORL A,R2 op_42_4f CA XCH A,R2 op_c8_cf

4B ORL A,R3 op_42_4f CB XCH A,R3 op_c8_cf

4C ORL A,R4 op_42_4f CC XCH A,R4 op_c8_cf

4D ORL A,R5 op_42_4f CD XCH A,R5 op_c8_cf

4E ORL A,R6 op_42_4f CE XCH A,R6 op_c8_cf

4F ORL A,R7 op_42_4f CF XCH A,R7 op_c8_cf

50 JNC op_40_50 D0 POP direct op_c0_d0

51 ACALL op_11_f1 D1 ACALL op_11_f1

52 ANL dir,A op_52_5f D2 SETB bit op_x2_x3

53 ANL dir,#data op_52_5f D3 SETB C op_x2_x3

54 ANL A,#data op_52_5f D4 DA A op_d4

55 ANL A,dir op_52_5f D5 DJNZ direct op_d5_df

56 ANL A,@R0 op_52_5f D6 XCHD A,@R0 op_d6_d7

57 ANL A,@R1 op_52_5f D7 XCHD A,@R1 op_d6_d7

58 ANL A,R0 op_52_5f D8 DJNZ R0 op_d5_df

59 ANL A,R1 op_52_5f D9 DJNZ R1 op_d5_df

5A ANL A,R2 op_52_5f DA DJNZ R2 op_d5_df

5B ANL A,R3 op_52_5f DB DJNZ R3 op_d5_df

5C ANL A,R4 op_52_5f DC DJNZ R4 op_d5_df

Table A-3 Opcode Tests Sorted by Opcode (continued)  

Opcode Mnemonic Test Name Opcode Mnemonic Test Name
A-14

Opcode Tests



5D ANL A,R5 op_52_5f DD DJNZ R5 op_d5_df

5E ANL A,R6 op_52_5f DE DJNZ R6 op_d5_df

5F ANL A,R7 op_52_5f DF DJNZ R7 op_d5_df

60 JZ op_60_70 E0 MOVX A,@DPTR op_e0

61 AJMP op_01_e1 E1 AJMP op_01_e1

62 XRL dir,A op_62_6f E2 MOVX A,@R0 op_e2_f3

63 XRL dir,#data op_62_6f E3 MOVX A,@R1 op_e2_f3

64 XRL A,#data op_62_6f E4 CLR A op_x3_x4

65 XRL A,dir op_62_6f E5 MOV A,dir op_e5

66 XRL A,@R0 op_62_6f E6 MOV A,@R0 op_e6_e7

67 XRL A,@R1 op_62_6f E7 MOV A,@R1 op_e6_e7

68 XRL A,R0 op_62_6f E8 MOV A,R0 op_e8_ef

69 XRL A,R1 op_62_6f E9 MOV A,R1 op_e8_ef

6A XRL A,R2 op_62_6f EA MOV A,R2 op_e8_ef

6B XRL A,R3 op_62_6f EB MOV A,R3 op_e8_ef

6C XRL A,R4 op_62_6f EC MOV A,R4 op_e8_ef

6D XRL A,R5 op_62_6f ED MOV A,R5 op_e8_ef

6E XRL A,R6 op_62_6f EE MOV A,R6 op_e8_ef

6F XRL A,R7 op_62_6f EF MOV A,R7 op_e8_ef

70 JNZ op_60_70 F0 MOVX @DPTR,A op_90_f0

71 ACALL op_11_f1 F1 ACALL op_11_f1

Table A-3 Opcode Tests Sorted by Opcode (continued)  

Opcode Mnemonic Test Name Opcode Mnemonic Test Name
A-15

Opcode Tests



72 ORL C,bit op_x2_x3 F2 MOVX @R0,A op_e2_f3

73 JMP 
@A+DPTR

op_73 F3 MOVX @R1,A op_e2_f3

74 MOV A,#data op_74 F4 CPL A op_x3_x4

75 MOV dir,#data op_75 F5  MOV dir,A op_f5

76  MOV 
@R0,#data

op_76_77 F6 MOV @R0,A op_f6_f7

77 MOV 
@R1,#data

op_76_77 F7 MOV @R1,A op_f6_f7

78 MOV R0,#data op_78_7f F8 MOV R0,A op_f8_ff

79 MOV R1,#data op_78_7f F9 MOV R1,A op_f8_ff

7A MOV R2,#data op_78_7f FA MOV R2,A op_f8_ff

7B MOV R3,#data op_78_7f FB MOV R3,A op_f8_ff

7C MOV R4,#data op_78_7f FC MOV R4,A op_f8_ff

7D MOV R5,#data op_78_7f FD MOV R5,A op_f8_ff

7E MOV R6,#data op_78_7f FE MOV R6,A op_f8_ff

7F MOV R7,#data op_78_7f FF MOV R7,A op_f8_ff

Table A-4 Opcode Tests for 128-Byte Internal RAM Configurations 

Test Name Opcode(s) Tested Instruction

o75_s 75 MOV  direct, #data

o76_77_s 76, 77 MOV  @Ri, #data

Table A-3 Opcode Tests Sorted by Opcode (continued)  

Opcode Mnemonic Test Name Opcode Mnemonic Test Name
A-16

Opcode Tests



o85_s 85 MOV  direct, direct

o86_87_s 86, 87 MOV  direct, @Ri

o88_8f_s 88–8F MOV  direct, Rn

oa6_a7_s A6, A7 MOV  @Ri, direct

oa8_af_s A8–AF MOV  Rn, direct

oc0_d0_s C0 PUSH  direct

D0 POP  direct

oc6_c7_s C6, C7 XCH  A, @Ri

od6_d7_s D6, D7 XCHD A, @Ri

oe6_e7_s E6, E7 MOV A, @Ri

of5_s F5 MOV  direct, A

of6_f7_s F6, F7 MOV  @Ri, A

of8_ff_s F8–FF MOV  Rn, A

Table A-4 Opcode Tests for 128-Byte Internal RAM Configurations 

Test Name Opcode(s) Tested Instruction
A-17

Opcode Tests



A-18

Opcode Tests



B
DW8051/DS80C320 Differences B

The DW8051 MacroCell is similar to the DS80C320 in terms of 
hardware features and instruction cycle timing. However, there are 
some important implementation differences between the DW8051 
and the DS80C320 in the following features:

• Serial Ports

• Timer 2

• Watchdog Timer

• Power Fail Detector

• Stop Mode

• Timed Access Protection

• Parallel Ports
B-1

DW8051/DS80C320 Differences



Serial Ports

The DW8051 does not implement serial port framing error detection 
and does not implement slave address comparison for multiprocessor 
communications. Therefore, the DW8051 also does not implement 
the following SFRs: SADDR0, SADDR1, SADEN0, and SADEN1.

Timer 2

The DW8051 does not implement Timer 2 downcounting mode or the 
downcount enable bit (T2MOD, bit 0). Also, the DW8051 does not 
implement Timer 2 output enable (T2OE) bit (TMOD2, bit 1). 
Therefore, the T2MOD SFR is also not implemented in the DW8051 
core. However, for applications that require T2OE functionality (for 
example, applications that require a standard 8051 P1 port module), 
you can build a T2MOD SFR and connect it to the SFR bus.

Also, the DW8051 Timer 2 overflow output is active for one clock 
cycle. In the DS80C320, the Timer 2 overflow output is a square wave 
with a 50% duty cycle.

Watchdog Timer

The DW8051 does not include an internal watchdog timer. However, 
the DW8051 does have a dedicated input port (wdti) for an interrupt 
from an external watchdog timer. The DW8051 also implements the 
watchdog timer interrupt flag, enable, and priority control bits for the 
external watchdog timer interrupt, but does not implement automatic 
watchdog timer reset. Because the watchdog timer control bits 
(WRTF, EWT, and RWT) are not implemented, the DS80C320 
B-2

DW8051/DS80C320 Differences



WDCON SFR (at SFR address D8h) is named EICON in the DW8051, 
and is implemented only when the extended interrupt unit is 
implemented.

Power Fail Detector

The DW8051 does not include an internal power fail detector. 
However, the DW8051 does have a dedicated input port (pfi) for an 
interrupt from an external power fail detector. The DW8051 also 
implements the power fail interrupt flag and enable bits for the external 
power fail interrupt.

Stop Mode

The clock is not gated in the DW8051 as it is in the DS80C320. 
However, the DW8051 internal cycle counter is reset in stop mode 
and, because most internal operations are controlled by the cycle 
counter, no internal flip-flops change state in stop mode and there is 
a significant reduction in power consumption.

In addition, the DW8051 exits stop mode only when reset, whereas 
the DS80C320 also exits stop mode through external interrupts or 
power fail interrupt. Therefore, the DW8051 does not implement a 
ring oscillator and does not implement the RGMD, RGSL, and BGS 
bits of the EXIF SFR (at SFR address 91h).

Timed Access Protection

The DW8051 does not implement timed access protection and 
therefore, does not implement the TA SFR.
B-3

DW8051/DS80C320 Differences



Parallel Ports

The DW8051 does not implement the DS80C320 multiplexed parallel 
ports (P0–P3). Instead, the DW8051 provides dedicated ports for 
memory interface, interrupts, serial interface, and other I/O functions. 
However, the DW8051 provides all the control signals required to 
operate parallel port modules. The example design provided with the 
DW8051 MacroCell includes source code for the parallel port 
modules and illustrates how to connect and control the parallel port 
modules to provide a DS80C320 compatible interface.
B-4

DW8051/DS80C320 Differences



Index

B
block diagram 2-10

C
CKCON register 2-26, 3-9
clk 2-3
compatibility

feature-by-feature 1-7
instruction timing 1-4
object code 1-6
with simulation tools 1-10
with synthesis tools 1-10

coreConsultant
DW8051 simulation activities 4-18
in DW8051 design flow 4-2
overview 1-8

CPU cycle 2-24

D
data memory. See RAM, external
data pointers 2-26
directory structure 4-5, 4-9
disk space requirements 1-12
documentation 1-3
DPH0 register 2-27

DPH1 register 2-27
DPL0 register 2-27
DPL1 register 2-27
DPS register 2-27
DPTR0 2-26
DPTR1 2-27
DW8051 MacroCell

block diagram 2-10
compatibility 1-6
core kit installation 4-5
creating workspace 4-12
directory organization 4-5, 4-9
features 1-3
input/output signals 2-2
instruction timing 1-4
performance 1-4

DW8051_core
block diagram 2-10
configuring 4-13
instantiating in Verilog 4-31
instantiating in VHDL 4-28
simulating 4-14
synthesizing 4-26

E
EICON register 3-40, 3-43
EIE register 3-40, 3-44
IN-1



EIP register 3-40, 3-44
example design 1-3
EXIF register 3-40, 3-42
extd_intr parameter 2-9, 3-37
extended interrupt unit 3-38

G
GTECH simulation model

generating 4-19
purpose 4-18

I
idle mode 2-3, 3-55
idle_mode_n 2-3, 3-55
IE register 3-40, 3-41, 3-42
input/output signals 2-2
instruction cycle 2-23
instruction set 2-16
instruction timing 1-4, 2-23
int0_n 2-6, 3-6, 3-47, 3-48
int1_n 2-6, 3-6, 3-47, 3-48
int2 2-6, 3-48
int3_n 2-6, 3-48
int4 2-6, 3-48
int5_n 2-7, 3-48
interrupt

enabling 3-46
latency 3-49
masking 3-46
priorities 3-46, 3-47
processing 3-45
sampling 3-48
service routine 3-45
structure 3-39
vectors 3-46

interrupt unit
extended 3-38
standard 3-38

IP register 3-40
iram_addr 2-5, 4-34, 4-35
iram_data_in 2-5, 4-35
iram_data_out 2-5, 4-34
iram_rd_n 2-5, 4-34
iram_we1_n 2-5, 4-34, 4-35
iram_we2_n 2-5, 4-35
irom_addr 2-5, 4-42
irom_cs_n 2-6, 4-42
irom_data_out 2-5, 4-42
irom_rd_n 2-5, 4-42

M
mem_addr 2-4, 4-47
mem_ale 2-4, 4-44
mem_data_in 2-4
mem_data_out 2-4
mem_ea_n 2-5, 2-13, 5-11
mem_psrd_n 2-4
mem_pswr_n 2-4, 2-12
mem_rd_n 2-4
mem_wr_n 2-4
memory interface

high-speed 4-47
through port modules 4-43

memory map 2-11
memory organization 2-11
memory requirements 1-12
MPAGE register 2-14
multiprocessor communication 3-34

O
opcode tests 5-5, A-1

P
p0_addr_data_n 2-6, 4-44
IN-2



p0_mem_reg_n 2-6, 4-44
p2_mem_reg_n 2-6, 4-44
parameters, listed 2-8
PCON register 3-55, 3-56
peripheral, connection 3-35, 4-61
pfi 2-7, 3-47, 3-49
pinout 2-2
por_n 2-3, 3-50
port modules 1-3, 2-12, 4-43
port_pin_reg_n 2-6, 4-44
PORT2 register 2-14
power saving modes 3-54
power-fail interrupt 3-49
power-on reset 3-50
product overview 1-2
program memory 2-12
PSW register 2-33

R
RAM

external
access speed 2-25
accessing 2-13
description 2-13
interface 4-43
signals and timing 4-50

internal
addressing 2-16
asynchronous 4-36
description 2-14
implementing 4-34, 4-36
organization 2-15, 2-16
signals and timing 4-35, 4-36
simulating 4-25
synchronous 4-39
testing 4-66, 5-8

ram_256 parameter 2-8, 2-14
RCAP2H register 3-11
RCAP2L register 3-11

reset 3-50
ROM

external
accessing 2-12
description 2-12
downloading 2-12
interface 4-43
signals and timing 4-48

internal
description 2-12
implementing 4-42, 4-43
signals and timing 4-43
simulating 4-26
testing 4-67, 5-9

rom_addr_size parameter 2-8, 2-12
rst_in_n 2-3, 3-51
rst_out_n 2-3, 3-51
Run Simulation 4-22
rxd0_in 2-7, 3-20, 3-28
rxd0_out 2-7, 3-20
rxd1_in 2-8, 3-20
rxd1_out 2-8

S
SBUF0 register 3-17
SBUF1 register 3-17
scanpath insertion 4-65
SCON0 register 3-17, 3-18
SCON1 register 3-17, 3-19
serial interface

description 3-16
serial parameter 2-9, 3-16
Serial Port 0 interrupt 3-47
Serial Port 0/1

description 3-16
mode 0 3-20
mode 1 3-23
mode 2 3-30
mode 3 3-32
IN-3



modes 3-17
multiprocessor communication 3-34

Serial Port 1 interrupt 3-48
SFR bus

description 3-35
peripheral integration 4-61
read timing 4-63
write timing 4-61

sfr_addr 2-3, 3-36, 4-63
sfr_data_in 2-3, 3-36, 4-63
sfr_data_out 2-3, 4-61
sfr_rd 2-4, 4-63
sfr_wr 2-3, 4-61
SFRs

address range 2-16
description 2-27
reset values 2-28

simulation
DW8051 testbench 5-4
gate level 4-28
internal RAM 4-25
internal ROM 4-26
tool compatibility 1-10

Simulation Setup 4-20
single-step operation 3-49
software development 4-67
SPC_FNC register 2-12
special function registers. See SFRs
standard interrupt unit 3-38
standard reset 3-51
static timing analysis 4-64
stop mode 2-3, 3-56
stop_mode_n 2-3, 3-57
stretch memory cycle 2-25, 4-50
swap space requirements 1-12
synthesis

tool compatibility 1-10
system requirements 1-12

T
t0 2-7, 3-5
t0_out 2-7, 3-6
t1 2-7, 3-5
t1_out 2-7, 3-6
t2 2-7, 3-13
t2_out 2-7, 3-13
T2CON register 3-11
t2ex 2-7, 3-14
TCON register 3-3
test suite

configuring 4-21
Test Suite Configuration 4-21
test_mode_n 2-3, 4-65
testbench

command file
description 5-11
syntax 5-12

description 4-15, 5-3
TH0 register 3-2
TH1 register 3-2
TH2 register 3-2, 3-11
Timer 0 interrupt 3-47
Timer 0/1

mode 0 3-5
mode 1 3-6
mode 2 3-7
mode 3 3-7
modes 3-3
rate control 3-9

Timer 1
interrupt 3-47
serial port baud rate generator 3-24

Timer 2
auto-reload mode 3-14
baud rate generator mode 3-15
capture mode 3-14
implementing 3-10
interrupt 3-47
modes 3-10
IN-4



serial port baud rate generator 3-26
timer/counter mode 3-13

timer/counters 3-2
timer2 parameter 2-8, 3-2
TL0 register 3-2
TL1 register 3-2
TL2 register 3-2, 3-11
TMOD register 3-3
txd0 2-8, 3-20, 3-27
txd1 2-8, 3-20, 3-27

V
View Simulation Log 4-24

W
watchdog timer interrupt 3-49
wdti 2-7, 3-48, 3-49
workstation requirements 1-12
IN-5



IN-6


	Contents
	About This Manual
	1. Introduction
	DW8051 MacroCell Solution 1�2
	DW8051 MacroCell Features 1�3
	DW8051 MacroCell Performance Overview 1�4
	Application Software Compatibility 1�6
	Configurable Features 1�6
	Synopsys coreConsultant 1�8
	Synthesis Tool Compatibility 1�10
	Simulation Tool Compatibility 1�10
	DW8051/DW8051-Source Version Differences 1�11
	Required Resources 1�12

	2. DW8051 Architectural Overview
	Input/Output Signals 2�2
	User-Modifiable Parameters 2�8
	DW8051 Architecture 2�9
	Memory Organization 2�11
	Program Memory 2�12
	External RAM 2�13
	Internal RAM 2�14

	Instruction Set 2�16
	Instruction Timing 2�23
	CPU Timing 2�24
	Stretch Memory Cycles 2�25
	Dual Data Pointers 2�26
	Special Function Registers 2�27


	3. DW8051 Hardware Description
	Timers/Counters 3�2
	803x/805x Compatibility 3�2
	Timers 0 and 1 3�3
	Mode 0 3�5
	Mode 1 3�6
	Mode 2 3�7
	Mode 3 3�7

	Timer Rate Control 3�9
	Timer 2 3�10
	Timer 2 Mode Control 3�12
	16-Bit Timer/Counter Mode 3�13
	16-Bit Timer/Counter Mode with Capture 3�14
	16-Bit Timer/Counter Mode with Auto-Reload 3�14
	Baud Rate Generator Mode 3�15


	Serial Interface 3�16
	803x/805x Compatibility 3�20
	Mode 0 3�20
	Mode 1 3�23
	Mode 1 Baud Rate 3�24
	Mode 1 Transmit 3�27
	Mode 1 Receive 3�28

	Mode 2 3�30
	Mode 2 Transmit 3�30
	Mode 2 Receive 3�30

	Mode 3 3�32
	Multiprocessor Communications 3�34

	SFR Bus Peripheral Interface 3�35
	External SFR Bus 3�35
	Bit Addressing 3�36

	Interrupts 3�37
	803x/805x Compatibility 3�39
	Interrupt SFRs 3�40
	Interrupt Processing 3�45
	Interrupt Masking 3�46
	Interrupt Priorities 3�47
	Interrupt Sampling 3�48
	Interrupt Latency 3�49
	Single-Step Operation 3�49

	Reset 3�50
	Power On Reset 3�50
	Standard Reset 3�51

	Power Saving Modes 3�54
	Idle Mode 3�55
	Stop Mode 3�56


	4. DW8051 User Guide
	Basic Design Flow 4�2
	Installing the DW8051 Core Kit 4�5
	Installation Directories and Files – VHDL Version 4�5
	Installation Directories and Files – Verilog Version 4�8

	Creating a Workspace 4�12
	Specifying Your Configuration 4�13
	Simulating the DW8051 MacroCell 4�14
	DW8051 Testbench Architecture 4�15
	Simulation Methods 4�17
	Verification Activities 4�18
	Generating a GTECH Simulation Model 4�19
	Simulation Setup 4�20
	Test Suite Configuration 4�21
	Run Simulation 4�22
	View Simulation Log 4�24


	Application Specific Simulation 4�24
	Simulating Internal RAM 4�25
	Simulating Internal ROM 4�25

	Synthesizing the DW8051 MacroCell 4�26
	Confirming Your Gate-Level Design 4�27
	Integrating the DW8051 into Your ASIC Design 4�28
	Instantiating DW8051_core (VHDL) 4�28
	Instantiating DW8051_core (Verilog) 4�31
	Interfacing to Internal RAM 4�34
	Internal RAM Read Interface 4�34
	Internal RAM Write Interface 4�35
	Implementing Internal RAM 4�36
	Interfacing to Asynchronous RAM 4�36
	Interfacing to Synchronous RAM 4�39

	Interfacing to Internal ROM 4�42
	Internal ROM Interface Signals 4�42
	Implementing Internal ROM 4�43

	Interfacing to External Memory Devices 4�43
	Standard 8051 Port Modules 4�43
	16-Bit Address Memory Interface 4�47
	External ROM Timing 4�48
	External RAM Timing 4�50

	Custom SFR Peripheral Integration 4�60
	SFR Bus Write Timing 4�61
	SFR Bus Read Timing 4�63


	Reading Designs Back in After Layout 4�64
	Manufacturing Test 4�65
	Testing Internal RAM 4�66
	Testing Internal ROM 4�67

	Software Development and Debugging 4�67

	5. DW8051 Test Suite
	Understanding the DW8051 MacroCell Test Suite 5�2
	DW8051 Testbench Architecture 5�3
	Test Programs 5�5
	Naming Conventions 5�6
	Opcode Tests 5�6
	Miscellaneous Tests 5�7
	Internal RAM Tests 5�8
	Internal ROM Tests 5�9

	Testbench Command File 5�11
	Command File Format 5�12
	Command File Example 5�12
	Modifying the Testbench Command File Manually 5�14
	Testbench File Conversion for Verilog 5�15


	Simulation Procedures 5�17
	Creating and Executing Custom Tests 5�17
	Writing Test Programs 5�18
	Initialization/Dump Facilities 5�18
	Error Handling Facilities 5�20

	Assembling and Executing Custom Test Programs 5�21


	Appendix A. Opcode Tests
	Appendix B. DW8051/DS80C320 Differences
	Serial Ports B�2
	Timer 2 B�2
	Watchdog Timer B�2
	Power Fail Detector B�3
	Stop Mode B�3
	Timed Access Protection B�3
	Parallel Ports B�4


	Figures
	Figure 1�1 Comparative Timing of DW8051 and Industry Standard 8051 1�5
	Figure 2�1 DW8051 Input/Output Signals 2�2
	Figure 2�2 DW8051 Block Diagram 2�10
	Figure 2�3 Memory Map 2�11
	Figure 2�4 Internal RAM Organization 2�15
	Figure 2�5 CPU Timing for Single-Cycle Instruction 2�25
	Figure 3�1 Timer 0/1 – Modes 0 and 1 3�6
	Figure 3�2 Timer 0/1 – Mode 2 3�7
	Figure 3�3 Timer 0 – Mode 3 3�9
	Figure 3�4 Timer 2 – Timer/Counter with Capture 3�13
	Figure 3�5 Timer 2 – Timer/Counter with Auto-Reload 3�15
	Figure 3�6 Timer 2 – Baud Rate Generator Mode 3�16
	Figure 3�7 Serial Port Mode 0 Receive Timing – Low Speed Operation 3�22
	Figure 3�8 Serial Port Mode 0 Receive Timing – High Speed Operation 3�22
	Figure 3�9 Serial Port Mode 0 Transmit Timing – Low Speed Operation 3�23
	Figure 3�10 Serial Port Mode 0 Transmit Timing – High Speed Operatio n 3�23
	Figure 3�11 Serial Port 0 Mode 1 Transmit Timing 3�29
	Figure 3�12 Serial Port 0 Mode 1 Receive Timing 3�29
	Figure 3�13 Serial Port 0 Mode 2 Transmit Timing 3�32
	Figure 3�14 Serial Port 0 Mode 2 Receive Timing 3�32
	Figure 3�15 Serial Port 0 Mode 3 Transmit Timing 3�33
	Figure 3�16 Serial Port 0 Mode 3 Receive Timing 3�34
	Figure 3�17 Timing of por_n Reset 3�52
	Figure 3�18 Assertion of rst_in_n 3�53
	Figure 3�19 Deassertion of rst_in_n 3�54
	Figure 3�20 Idle Mode Entry Timing 3�58
	Figure 3�21 Idle Mode Exit Timing 3�59
	Figure 3�22 Stop Mode Timing 3�60
	Figure 4�1 DW8051 MacroCell Design Flow 4�3
	Figure 4�2 Directory Structure – VHDL Version 4�7
	Figure 4�3 Directory Structure – Verilog Version 4�10
	Figure 4�4 DW8051 Testbench Architecture 4�16
	Figure 4�5 Simulation Procedures 4�19
	Figure 4�6 Internal RAM Read Signals and Timing 4�35
	Figure 4�7 Internal RAM Write Signals and Timing 4�36
	Figure 4�8 Example Asynchronous Internal RAM Implementation 4�37
	Figure 4�9 Asynchronous RAM Interface Timing 4�37
	Figure 4�10 Example Synchronous Internal RAM Implementation 4�40
	Figure 4�11 Synchronous RAM Interface Timing 4�40
	Figure 4�12 Internal ROM Interface Timing 4�43
	Figure 4�13 DW8051_core to Standard Port Module Connections 4�45
	Figure 4�14 ROM/RAM Interface for 8032 Built from DW8051_core 4�46
	Figure 4�15 External ROM Timing 4�47
	Figure 4�16 16-Bit Address Bus Memory Interface Connections 4�48
	Figure 4�17 DW8051_core Signals for Program Memory Read Cycle 4�49
	Figure 4�18 8032-Compatible I/O Signals for Program Memory Read Cycle 4�49
	Figure 4�19 DW8051_core Signals for Data Memory Read with Stretch=0 4�51
	Figure 4�20 8032-Compatible I/O Signals for Data Memory Read with Stretch=0 4�52
	Figure 4�21 DW8051_core Signals for Data Memory Write with Stretch=0 4�53
	Figure 4�22 8032-Compatible I/O Signals for Data Memory Write with Stretch=0 4�54
	Figure 4�23 DW8051_core Signals for Data Memory Read with Stretch=1 4�55
	Figure 4�24 8032-Compatible I/O Signals for Data Memory Read with Stretch=1 4�56
	Figure 4�25 DW8051_core Signals for Data Memory Write with Stretch=1 4�57
	Figure 4�26 8032-Compatible I/O Signals for Data Memory Write with Stretch=1 4�58
	Figure 4�27 DW8051_core Signals for Data Memory Write with Stretch=2 4�59
	Figure 4�28 8032-Compatible I/O Signals for Data Memory Write with Stretch=2 4�60
	Figure 4�29 SFR Peripheral Interfacing 4�62
	Figure 4�30 SFR Bus Write Timing 4�63
	Figure 4�31 SFR Bus Read Timing 4�64
	Figure 5�1 DW8051 Testbench Architecture 5�4

	Tables
	Table 1-1 Feature Summary of DW8051 and Common 803x/805x Configurations 1�8
	Table 1-2 License Features Required for DW8051 1�13
	Table 2-1 Signal Descriptions 2�3
	Table 2-2 User-Modifiable Parameters 2�8
	Table 2-3 Legend for Instruction Set Table 2�17
	Table 2-4 DW8051 Instruction Set 2�17
	Table 2-5 Data Memory Stretch Values 2�26
	Table 2-6 Special Function Registers 2�28
	Table 2-7 Special Function Register Reset Values 2�30
	Table 2-8 PSW Register – SFR D0h 2�33
	Table 3-1 Timer/Counter Implementation Comparison 3�2
	Table 3-2 TMOD Register – SFR 89h 3�3
	Table 3-3 TCON Register – SFR 88h 3�4
	Table 3-4 CKCON Register – SFR 8Eh 3�10
	Table 3-5 T2CON Register – SFR C8h 3�11
	Table 3-6 Timer 2 Mode Control Summary 3�12
	Table 3-7 Serial Port Modes 3�17
	Table 3-8 SCON0 Register – SFR 98h 3�18
	Table 3-9 SCON1 Register – SFR C0h 3�19
	Table 3-10 Serial Interface Implementation Comparison 3�20
	Table 3-11 Timer 1 Reload Values for Common Serial Port Mode 1 Baud Rates 3�25
	Table 3-12 Timer 2 Reload Values for Common Serial Port Mode 1 Baud Rates 3�27
	Table 3-13 Bit–Addressable SFRs 3�36
	Table 3-14 Interrupt Compatibility Summary for Extended Interrupt Unit 3�39
	Table 3-15 IE Register – SFR A8h 3�41
	Table 3-16 IP Register – SFR B8h 3�42
	Table 3-17 EXIF Register – SFR 91h 3�42
	Table 3-18 EICON Register – SFR D8h 3�43
	Table 3-19 EIE Register – SFR E8h 3�44
	Table 3-20 EIP Register – SFR F8h 3�44
	Table 3-21 Interrupt Natural Vectors and Priorities 3�46
	Table 3-22 Interrupt Flags, Enables, and Priority Control 3�47
	Table 3-23 Power Saving Modes Compatibility Summary 3�55
	Table 3-24 PCON Register – SFR 87h 3�56
	Table 4-1 DW8051 MacroCell Directory Structure – VHDL Version 4�5
	Table 4-2 Files and Directories in DW8051 – VHDL Version 4�7
	Table 4-3 DW8051 MacroCell Directory Structure – Verilog Version 4�9
	Table 4-4 Files and Directories in DW8051 – Verilog Version 4�10
	Table 4-5 Configuration Options 4�13
	Table 4-6 Generate GTECH Simulation Model Parameters 4�20
	Table 4-7 Run Simulation Parameters 4�23
	Table 4-8 Available SFR Addresses for External Peripherals 4�60
	Table 5-1 Miscellaneous Tests 5�7
	Table 5-2 Testbench Command File Commands 5�13
	Table 5-3 Memory Dump Contents for big_dump.inc.unx 5�19
	Table 5-4 Memory Dump Contents for bdump_s.inc.unx 5�19
	Table 5-5 Selected SFRs in Memory Dump Addresses 38h–5Fh 5�20
	Table 5-6 Testbench Exit Addresses and Actions 5�21
	Table A�1 Opcode Tests Sorted by Instruction Type A�1
	Table A�2 Opcode Tests Sorted by Test Name A�5
	Table A�3 Opcode Tests Sorted by Opcode A�10
	Table A�4 Opcode Tests for 128-Byte Internal RAM Configurations A�16

	Examples
	Example 4�1 Instantiating DW8051_core in VHDL 4�29
	Example 4�2 Instantiating DW8051_core in Verilog 4�31
	Example 5�1 Testbench Command File for Opcode 84h 5�12

	About This Manual
	Introduction
	DW8051 MacroCell Solution
	DW8051 MacroCell Features
	DW8051 MacroCell Performance Overview
	Application Software Compatibility
	Configurable Features
	Synopsys coreConsultant
	Synthesis Tool Compatibility
	Simulation Tool Compatibility
	DW8051/DW8051-Source Version Differences
	Required Resources

	DW8051 Architectural Overview
	Input/Output Signals
	User-Modifiable Parameters
	DW8051 Architecture
	Memory Organization
	Program Memory
	External RAM
	Internal RAM

	Instruction Set
	Instruction Timing
	CPU Timing
	Stretch Memory Cycles
	Dual Data Pointers
	Special Function Registers


	DW8051 Hardware Description
	Timers/Counters
	803x/805x Compatibility
	Timers 0 and 1
	Mode 0
	Mode 1
	Mode 2
	Mode 3

	Timer Rate Control
	Timer 2
	Timer 2 Mode Control
	16-Bit Timer/Counter Mode
	16-Bit Timer/Counter Mode with Capture
	16-Bit Timer/Counter Mode with Auto-Reload
	Baud Rate Generator Mode


	Serial Interface
	803x/805x Compatibility
	Mode 0
	Mode 1
	Mode 1 Baud Rate
	Mode 1 Transmit
	Mode 1 Receive

	Mode 2
	Mode 2 Transmit
	Mode 2 Receive

	Mode 3
	Multiprocessor Communications

	SFR Bus Peripheral Interface
	External SFR Bus
	Bit Addressing

	Interrupts
	803x/805x Compatibility
	Interrupt SFRs
	Interrupt Processing
	Interrupt Masking
	Interrupt Priorities
	Interrupt Sampling
	Interrupt Latency
	Single-Step Operation

	Reset
	Power On Reset
	Standard Reset

	Power Saving Modes
	Idle Mode
	Stop Mode


	DW8051 User Guide
	Basic Design Flow
	Installing the DW8051 Core Kit
	Installation Directories and Files – VHDL Version
	Installation Directories and Files – Verilog Version

	Creating a Workspace
	Specifying Your Configuration
	Simulating the DW8051 MacroCell
	DW8051 Testbench Architecture
	Simulation Methods
	Verification Activities
	Generating a GTECH Simulation Model
	Simulation Setup
	Test Suite Configuration
	Run Simulation
	View Simulation Log


	Application Specific Simulation
	Simulating Internal RAM
	Simulating Internal ROM

	Synthesizing the DW8051 MacroCell
	Confirming Your Gate-Level Design
	Integrating the DW8051 into Your ASIC Design
	Instantiating DW8051_core (VHDL)
	Instantiating DW8051_core (Verilog)
	Interfacing to Internal RAM
	Internal RAM Read Interface
	Internal RAM Write Interface
	Implementing Internal RAM
	Interfacing to Asynchronous RAM
	Interfacing to Synchronous RAM

	Interfacing to Internal ROM
	Internal ROM Interface Signals
	Implementing Internal ROM

	Interfacing to External Memory Devices
	Standard 8051 Port Modules
	16-Bit Address Memory Interface
	External ROM Timing
	External RAM Timing

	Custom SFR Peripheral Integration
	SFR Bus Write Timing
	SFR Bus Read Timing


	Reading Designs Back in After Layout
	Manufacturing Test
	Testing Internal RAM
	Testing Internal ROM

	Software Development and Debugging

	DW8051 Test Suite
	Understanding the DW8051 MacroCell Test Suite
	DW8051 Testbench Architecture
	Test Programs
	Naming Conventions
	Opcode Tests
	Miscellaneous Tests
	Internal RAM Tests
	Internal ROM Tests

	Testbench Command File
	Command File Format
	Command File Example
	Modifying the Testbench Command File Manually
	Testbench File Conversion for Verilog


	Simulation Procedures
	Creating and Executing Custom Tests
	Writing Test Programs
	Initialization/Dump Facilities
	Error Handling Facilities

	Assembling and Executing Custom Test Programs


	Opcode Tests
	DW8051/DS80C320 Differences
	Serial Ports
	Timer 2
	Watchdog Timer
	Power Fail Detector
	Stop Mode
	Timed Access Protection
	Parallel Ports


